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Abstract. This paper presents an implementation of Extreme Learning Machine (ELM) in the Multi-Agent System (MAS). The
proposed method is a trust measurement approach namely Certified Belief in Strength (CBS) for Extreme Learning Machine in
Multi-Agent Systems (ELM-MAS-CBS). The CBS is applied on the individual agents of MAS, i.e., ELM neural network. The
trust measurement is introduced to compute reputation and strength of the individual agents. Strong elements that are related to
the ELM agents are assembled to form the trust management in which will be letting the CBS method to improve the performance
in MAS. The efficacy of the ELM-MAS-CBS model is verified with several activation functions using benchmark datasets (i.e.,
Pima Indians Diabetes, Iris and Wine) and real world applications (i.e., circulating water systems and governor). The results show
that the proposed ELM-MAS-CBS model is able to achieve better accuracy as compared with other approaches.
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1. Introduction

The Extreme Learning Machine (ELM) has proven
to be an efficient learning algorithm over the years as
compared to the traditional learning methods in the as-
pect of generalization and learning speed [1–6]. ELM
is capable of making universal approximation with ran-
dom input weights and biases [7]. In other words, the
hidden neurons are not required in neuron alike and the
weights are the parameters that need to learn the con-
nection between the hidden layer and the output layer.

Based on Huang et al. [8], ELM is extraordinarily
efficient and lean towards to global optimum as com-
pared with the traditional feedforward neural network
(FNN) [8]. In addition, ELM can reach the best gen-
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eralization bound of the traditional FNN where all the
parameters are learned with commonly used activation
functions [9]. In terms of efficiency and generaliza-
tion, the performance of ELM is far better than tra-
ditional FNN and has been experimented in different
kind of problems. The application of ELM has also
been exemplified in different fields such as biomed-
ical analysis [10,11], chemical process [12], system
modeling [13,14], power systems [15], action recogni-
tion [16], hyperspectral images [17], etc.

There is some research works focusing on ensem-
ble model to combine individual prediction of multi-
ple ELMs to give a final output [18–22]. This strat-
egy is also adopted in a Multi-Agent System (MAS).
MAS allows the subproblems of a constraint satisfac-
tion problem to be subcontracted to different prob-
lem solving agents with their own interests and goals.
Thus, MAS has been applied to tackle problems in
different fields successfully in the past decade. This
is evidenced by a widespread application of MAS to
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different domains including e-Commerce [23], health-
care [24], military support [25], decision support [26],
knowledge management [27], as well as control sys-
tems [28]. The general structure of a MAS is shown in
the Fig. 1 where the base platform is built by a group
of ELMs that are deemed as individual agents. In this
structure, the outcome of an individual ELM (individ-
ual agent) is sent to a parent agent, which is the deci-
sion combination module to make the final decision.

Generally, the average output in the decision com-
bination module is based on the methods such as ex-
act average [20], weighted average [7], confusion ma-
trix [29], and voting [30]. Unfortunately, those ap-
proaches required additional algorithms to generate
outcome in the decision combination module.

Recognition and rejection accuracy rates based trust
measurement has been proposed [21]. In the model,
two teams were used where the first team consists
of three modified Fuzzy min-max (FMM) agents and
the second team consists of three modified Fuzzy
ARTMAP (FAM) agents. The model was presented
with better performances as compared with other ap-
proaches mentioned in [21]. Another trust measure-
ment strategy based on Bayesian formalism with FMM
MAS was proposed in [31]. In this model, the FMM is
used as a learning agent in MAS and followed by com-
bining with Bayesian formalism to obtain a trust mea-
surement. The results show that the model is able to
yield the better performances as compared with other
approaches mentioned in [31].

In the recent development of MAS model for trust
measurement, a method namely Certified Belief in
Strength (CBS), which based on strength and repu-
tation of individual FMM based agent [31]. During
the training process, trust is the strong elements that
are related with the FMM agents which let the CBS
method to improve the performance of the MAS. As a
result, the CBS improved the performance of the MAS
model by improving the accuracy rates of the individ-
ual agents.

Nowadays, an element that plays an important role
in daily life is trust and trustworthiness. Especially oc-
cur in our social environment. Basically the element
allows the consignment of duties and decisions to ap-
plicable persons, who can execute the duties [32]. The
element had been developed in few areas, such as in e-
business filed by Mui et al. [33] and in wireless sensor
networks by Boukerche and Li [34].

These papers propose an extended CBS method
using Extreme Learning Machine based Multi-Agent
System (hereafter denoted as ELM-MAS-CBS). The

Fig. 1. A general structure of MAS.

Fig. 2. Overview of ELM-MAS-CBS model.

difference is that MACS CBS used FMM which con-
sists of multiple hyperboxes while the proposed ap-
proach employs a “team” concept which involves a
group of individual ELM-based agents.

This paper is organized as follows. The algorithms
of ELM-MAS-CBS are explained in Section 2. The
flow chart of ELM-MAS-CBS is showed in Sec-
tion 3. Section 4 showed the results and discussion of
the benchmarking datasets. The applications of ELM-
MAS-CBS in power generation are presented in Sec-
tion 5. Lastly, Section 6 is the conclusion.

2. The algorithms of ELM-MAS-CBS

In this paper, the ELM-MAS-CBS model consists
of three layers as shown in Fig. 2, i.e., the first layer
consists of several individual ELM-based agents; the
second layer consists of several teams of ELM-based
and The CBS is implemented in the individual ELM-
based agents. Then, the Manager will select the team
with the highest CBS as the final decision as the output.
In this paper, the number of teams is set as 3 (T = 3).
The number of agent used in a team is set as 5 (K =
5). An ELM-based agent is denoted as ELMtk (for t =
1, . . ., T , for k = 1, . . ., K).

The step-by-step training procedure is given as fol-
lows.

Step 1: The input weights atki and btki are assigned
randomly. For all steps/equations of training process,
variables run for i = 1, . . . , L (number of hidden neu-
ron of ELM), for t = 1, . . ., T , and k = 1, 2, . . ., K.
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Step 2: The hidden layer output matrix for ELMtk,
Htk, is calculated as follows, where N is the number
of training samples, G is the activation functions and
xj is the input vector.

Htk =

 G(atk1 , btk1 ,x1) ... G(a
tk
L , b

tk
L ,x1)

: ... :
G(atk1 , b

tk
1 ,xN ) ... G(atkL , b

tk
L ,xN )


N×L

(1)

G(atki , b
tk
i ,xj) =

1

1 + exp{−(atki · xj + btki )}
(Sigmoid) (2)

G(atki , b
tk
i ,xj) = exp

{
−btki

∥∥xj − atki
∥∥2}

(3)
(RBF)

Step 3: The output weights of ELMtk,βtk are com-
puted by using the following equation,

βtk =
(
(Htk)T (Htk)

)−1
(Htk)TT, (4)

where T = [t1, . . . , tN ]T is the respective targeted
output vectors.

Step 4: Once output weights of ELMtk are com-
puted, the training samples are used to compute the
outputs of ELMtk, i.e.,

ytk = ELMtk(xj) =

L∑
i=1

βtk
i G(a

tk
i , b

tk
i ,xj)

for j = 1, . . . , N (5)

Step 5: The accuracy rates of the ELM tk are calcu-
lated.

Atk =
N tk

N
× 100% (6)

where N tk and Atk are number correctly classified
samples and accuracy rate of ELMtk.

Step 6: Given the validation samples, the output of
ELMtk is calculated based on Eq. (5).

Step 7: Given an initial strength of CBS for all team
is 100 (S = [100 100 100]) [21] and initial bid coeffi-
cient (Cbid) is 0.01 [21]. The initial team bid is in pro-
portion to strength as follows [23],

Bt = CbidS
t (7)

Step 8: With the validation samples, the trust ele-
ment, Ct , is calculated as shown in Eq. (8). Use the
Eq. (6) to determine Ck in order to look for the accu-
racy rate of the agents in each team. Then, the ELM
with the highest accuracy rate is chosen (denoted as
ELMtw where w is the winner of the team) and will be
representing its team and will be applying into Eq. (8)

and will be submitting to the manager.

Ct = Cbid (St +Atw) (8)

Step 9: According to [21], the Eq. (7) is further mod-
ified as the reward and penalty to update the strength
shown in Eq. (9), where P is penalty andR is reward.
When an agent generates a correct prediction, P = 0
while R = Bt; otherwise, P = Bt while R = 0.

St(new) = St(now)− P +R (9)

Step 10: Since St is updated, hence both the Atk

and the Bt are updated based on Eqs (6) and (7) re-
spectively.

Once all the samples are trained using Step 1 to Step
10, the ELM-MAS-CBS can be used for prediction of
a newly arrived and unknown input vector z. The step-
by-step prediction procedure is given as follows.

Step 11: All the atki , btki , βtk, Atk, St, and Ct

are loaded from completed training process. For all
steps/equations of predictions procedures, variables
are run for i = 1, . . . , L, for t = 1, . . . , T , and k = 1,
2,. . . ,K.

Step 12: The hidden layer output matrix for ELMtk,
htk, is calculated as follows.

htk = [G(atk1 , b
tk
1 , z) . . . G(a

tk
L , b

tk
L , z)]1×L (10)

Step 13: The outputs of ELMtk are calculated,

ytk = htkβtk (11)

Step 14: The highest value of accuracy rates is se-
lected from each team (denoted as AtU ), and are ap-
plied in Eq. (13) to calculate the trust elements of
teams.

AtU = argmax
k

(
Atk
)

(12)

Ct = Cbid (St +AtU ) (13)

Step 15: The highest value of the Ct from all teams
(denoted as CV ) is determined, where V is the winner
from all teams, i.e.,

CV = argmax
t

(
Ct
)

(14)

Step 16: The final output of ELM-MAS-CBS can be
found based on the Eq. (11), where t = V (winning
team) and k = U (winning agent of the winning team).

The proposed sequence of ELM-MAS-CBS model
is summarized in Fig. 3.
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3. The Flow Chart of ELM-MAS-CBS

Fig. 3. Sequence of algorithms of ELM-MAS-CBS.
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Table 1
Specification of benchmark datasets [20]

Dataset # Attributes # Classes # Data samples
PID 8 2 768
Iris 4 3 150

Wine 13 3 178

Table 2
Testing accuracy rates of ELM-MAS-CBS using sigmoid activation
function

# Hidden PID Iris Wine
neurons, test accuracy test accuracy test accuracy

L (%) (%) (%)
5 74.18 94.53 95.56

10 76.73 97.73 98.33
15 76.67 98.60 98.33
20 77.19 98.67 98.89
25 76.54 98.60 97.78
30 77.12 98.73 98.89
35 76.73 98.60 98.89
40 76.67 98.53 98.89
45 76.54 98.53 98.33
50 76.54 98.40 98.33

4. Results on the benchmarking data

Throughout this paper, there were three benchmark
datasets (e.g. Pima Indians Diabetes (PID), Iris and
Wine) were used to test the performance of ELM-
MACS-CBS. For all experiments, the number of teams
had set as 3 (T = 3). Each team had 5 agents (N1)
based on ELM. In the experiment, both activation func-
tions (Sigmoid, SigAct and RBFun) are used. The
specifications of the datasets are shown in Table 1 [20].
All experiments were ran in MATLAB (ver.2010) on
a personal computer equipped with Intel(R) Core(TM)
i7 2.9 GHz CPU and 8 G RAM.

In the experiment, three benchmark datasets were
evaluated using the adopted train-validation-test
method. The 60% of the PID samples were used for
training while the 20% were used to determine the
most appropriate number of neurons (i.e., L) through
a validation process. In the case of Iris, 100% of the
data samples were used for training (90% for training
and 10% for validation) and 100% for testing. All the
experiments were repeated for 10 times. The tenfold
cross-validation method was used to evaluate the Wine.
Each Wine data set was divided into 10 subsets where
8 for training and 1 for validation and the remaining
for testing.

There are two types of activation functions, i.e., Ra-
dial Basis Function (RBFun) and Sigmoid activation
function (SigAct) are used in each benchmark dataset.
Table 2 showed the accuracy rates based on sigmoid
activation function for PID, Iris and Wine. In addi-

Table 3
Testing accuracy rates of ELM-MAS-CBS using radial basis activa-
tion function

# Hidden PID Iris Wine
Neurons, Test accuracy Test accuracy Test accuracy

L (%) (%) (%)
5 71.70 96.27 91.11

10 75.03 98.07 98.33
15 75.88 98.53 97.78
20 76.67 98.53 97.78
25 76.34 98.67 100
30 77.12 98.60 98.33
35 76.14 98.60 97.78
40 76.21 98.67 99.44
45 76.14 98.40 98.89
50 75.49 98.40 99.44

tion, Table 3 also shows the accuracy rates based on ra-
dial basis activation function for the three benchmark
datasets. Among the Tables 2 and 3, the number of hid-
den neurons, L with the best test accuracy rate is se-
lected for evaluating the performance of ELM-MAS-
CBS.

In the Tables 2 and 3, the increasing number of hid-
den neuron is not improved the accuracy rate. This is
because that this situation in called overfitting, where
the neural networks overestimate the complexity of the
targeted problem. On the other hand, it also greatly de-
grades generalization capability, which leads to signif-
icant deviation in predictions. By doing this, allocating
the proper number of hidden neurons to prevent over-
fitting is critical in function approximation using feed-
forward neural network.

Table 4 summarizes the results for using ELM-
MAS-CBS in terms of the test accuracy and the num-
ber of hidden neurons for two types of activation func-
tion in the benchmark datasets. The results showed that
the RBFun has the highest test accuracy rate as com-
pared with the SigAct.

The proposed ELM-MAS-CBS is compared with
other ELM. Table 5 showed that the test accuracy rates
of ELM-MAS-CBS are comparable (if not superior)
with MACS-TNC [13] and MACS-CBS [20].

5. Application in power generation

The ELM-MAS-CBS is applied on the power gener-
ation in following section.

5.1. Circulation water systems

An overview of Circulating Water System (CWS) is
shown in Fig. 4 [36,37]. This system consists of pip-
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Table 4
Summary for test accuracy rates of ELM-MAS-CBS

Activation PID Iris Wine
function # Hidden Test accuracy # Hidden Test accuracy # Hidden Test accuracy

neurons, L (%) neurons, L (%) neurons, L (%)
RBFun 27 77.52 23 98.87 25 100
SigAct 20 77.19 34 98.87 22 99.44

Table 5
Comparison with other approaches

Algorithm PID Iris Wine
Test accuracy (%) Test accuracy (%) Test accuracy (%)

FMM [20] 72.46 94.65 97.15
MACS-TNC [13] 75.82 − 97.32
MACS-CBS [20] 76.58 99.33 97.67
ELM-MAS-CBS (RBFun) 77.52 98.87 100
ELM-MAS-CBS (SigAct) 77.19 98.87 99.44

Fig. 4. Circulating water systems.

ing, turbine condensers and drum strainer between the
inlet of the sea water and the outfall where the water
will be returned into the sea. The major component in
the CWS is the turbine condenser where it is used to
remove the heat from the low pressure steam while at-
tempting to maintain turbine backpressure at the low-
est possible yet constant level.

A total number of 2500 data samples were collected
and they were categorized into training, validation, and
testing sets, as shown in Table 6 [38]. The proposed
ELM-MAS-CBS was trained and validated to deter-
mine the optimal number of hidden neurons before it
was tested. The results of test accuracy are listed in Ta-
ble 7. The highest test accuracy of ELM-MAS-CBS is
96.92% and it was achieved by training ELM-MAS-
CBS with a Radial Basis activation function. The pro-

posed ELM-MAS-CBS trained using a Radial Basis
activation function is compared with other classifiers,
which include FAM [37] and SVM [38]. From Table 7,
the test accuracy rate of ELM-MAS-CBS is compara-
ble (if not superior) with FAM [37] and SVM [38].

5.2. GAST governor

The GAST is one of the governor model [40]. It rep-
resents the principal dynamic characteristics of indus-
trial gas turbines driving generators connected to elec-
tric power systems. Speed variations from nominal are
expected to be small (approximately 5%). The model
shown in Fig. 5 consists of a forward path with gover-
nor time constant, T1, and a combustion chamber time
constant, T2, together with a load-limiting feedback
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Table 6
Specification of Benchmark Dataset in CWS [38]

Class Indication # Training # Validation # Testing
1 Heat transfer in condenser is efficient and no blockage in piping system 219 109 219
2 Heat transfer in condenser is not efficient and no blockage in piping system 231 116 231
3 Heat transfer in condenser is efficient and significant blockage in piping system 271 136 272
4 Heat transfer in condenser is not efficient and significant blockage in piping system 279 139 278

Fig. 5. Governor model, GAST [40].

Table 7
Comparison of CWS dataset

Algorithm Circulating water systems
Test accuracy (%) # Hidden neurons

ELM-MAS-CBS 96.92 65
(RBFun)

ELM-MAS-CBS 96.81 55
(SigAct)

FAM [37] 95.70 18
SVM [38] 97.10 124

path. The load limit is sensitive to turbine exhaust tem-
perature, and T3 represents the time constant of the ex-
haust gas measuring system. The constant,KT , is used
to adjust the gain of the load-limited (AT ) feedback
path.

The training data is collected on the output of the
GAST block which is the mechanical power, Pmech for
a normal operating gas turbine [39]. The total data col-
lected is 630 for all seven input attributes in the GAST
shown in Table 8 These seven input attributes in the

Table 8
Summary of dataset in GAST

Class Range # Training
1 0 < R < 1 100
2 0 < Dturb < 0.5 50
3 0 < AT 6 1 100
4 0.01 < T1 < 0.5 50
5 0.01 < T2 < 0.5 50
6 0.01 < T3 < 5 140
7 0 < KT < 5 140

Total 630

governor are varied within their operating range val-
ues [40]. The data are pre-divided into 60% training,
20% validation, and 20% testing sets, as shown in Ta-
ble 9.

Table 10 summarizes the results for using ELM-
MAS-CBS in terms of the training time (seconds), test
accuracy, and the number of hidden neurons for each
activation function in GAST.As the results, the best test
accuracy rate is 83.04% in Sigmoid activation function.
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Table 9
Details of the training, validation, and testing of the GAST dataset

Class # Training # Validation # Testing # Total
1 60 20 20 100
2 30 10 10 50
3 60 20 20 100
4 30 10 10 50
5 30 10 10 50
6 84 28 28 140
7 84 28 28 140

Total 630

Table 10
Test accuracy rates for two activation function in GAST

Activation function GAST
Test accuracy (%) # Hidden neurons

RBFun 79.57 40
SigAct 83.04 50

6. Conclusion

In this research, a new ELM-MAS-CBS model with
three layers of ELMs has been developed. These pa-
pers propose an extended CBS method using Extreme
Learning Machine based Multi-Agent System (here-
after denoted as ELM-MAS-CBS). The difference is
that MACS CBS used FMM which consists of multi-
ple hyperboxes while the proposed approach employs
a “team” concept which involves a group of individual
ELM-based agents.

The developed model is validated by using bench-
mark datasets which are Pima Indians Diabetes (PID),
Iris and Wine. In the Table 5, the test accuracy for
PID and Wine are higher when compare with other ap-
proaches but is lower in Iris. Therefore based on the
outcome, the test accuracy rates of ELM-MAS-CBS
are comparable (if not superior) with MACS-TNC [13]
and MACS-CBS [20]. Not only that, the developed
model also applied its application on the power genera-
tion which are circulating water systems and governor
(GAST). The experimental results showed that the test
accuracy rates of ELM-MAS-CBS for circulating wa-
ter systems is comparable (if not superior) with other
algorithms in which the proposed model is higher than
FAM [37] and lower than SVM [38].

Although the results obtained from the benchmark
studies on Pima Indians Diabetes (PID), Iris and Wine
and applications in power generation (circulating wa-
ter systems and governor, GAST) are encouraging,
more studies using datasets from various application
domains are required to validate the applicability of
ELM-MAS-CBS in real world application. In addition,
investigation of proposed model in nonstationary ap-

plications by replacing ELM of ELM-MAS-CBS with
OSELM (online sequence version of ELM [7]) could
be another research for further work.

The generalized activation functions are added to
‘future works’. For example, the generalized RBF
(GRBF) activation function can continuously and
smoothly reproduce different RBF by changing a real
parameter. In addition, the generalized Gaussian distri-
bution for GRBF can add a shape parameter to normal
Gaussian distribution [41]. Therefore, a better corre-
sponding between the shape of the kernel and the dis-
tribution of the distances.
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