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A B S T R A C T

This paper deals with the backtracking search algorithm (BSA) optimization technique to solve the design
problems of multi-machine power system stabilizers (PSSs) in large power system. Power system stability
problem is formulated by an optimization problem using the LTI state space model of the power system. To
conduct a comprehensive analysis, two test systems (2-AREA and 5-AREA) are considered to explain the
variation of design performance with increase in system size. Additionally, two metaheuristic algorithms,
namely bacterial foraging optimization algorithm (BFOA) and particle swarm optimization (PSO) are accounted
to evaluate the overall design assessment. The obtained results show that BSA is superior to find consistent
solution than BFOA and PSO regardless of system size. The damping performance that achieved from both test
systems are sufficient to achieve fast system stability. System stability in linearized model is ensured in terms of
eigenvalue shifting towards stability regions. On the other hand, damping performance in the non-linear model
is evaluated in terms of overshoot and setting times. The obtained damping in both test systems are stable for
BSA based design. However, BFOA and PSO based design perform worst in case of large power system. It is also
found that the performance of BSA is not affected for large numbers of parameter optimization compared to
PSO, and BFOA optimization techniques. This unique feature encourages recommending the developed
backtracking search algorithm for PSS design of large multi-machine power system.

1. Introduction

Stability of modern power system is very important for its secure
and reliable operation and it is achieved through proper design of
power system stabilizers (PSS). However, instability [1] may arise
through growing of power system oscillations and its consecutive
events originated from various changes in the system. The changes
may be in terms of generator tripping, load addition (suspension or
change) and miscellaneous type of faults. Those changes eventually
may lead to growing the oscillations of active power generated by
synchronous generators [2]. In multi-machine system scenario, two
types of power oscillations are observable [3]. The oscillations among
the nearby generators of same area are called the local modes of
oscillations. Another type of oscillations are the inter-area modes of
power oscillations that may tempt other generators of different regions
to oscillate along with affected generators [3]. In case of interconnected
systems, power oscillations especially inter-area oscillations can be
very dangerous, causing the entire system collapse by affecting and

tripping generators one by one. The purpose of PSS installation is to
damp those oscillations effectively in order to restore system stability
[2,3]. For many decades, PSSs have been used as one of the most cost
effective damping controller. Unfortunately, PSS can provide effective
damping over only local mode of oscillations i.e. which achieves partial
system stability [2,4]. As an alternate option to damp inter-area
oscillations, addition of FACTS based damping controller is recom-
mended in order to ensure full system stability [3,5]. Obviously, that
increase system's total cost and may cause to originate other types of
problem in the power system. However, research showed that inter-
area oscillating modes can be managed to damp successfully by robust
tuning of PSS parameters [6]. Therefore, the robust design of PSS
parameters is the main challenges to strengthen entire system stability.

To design PSSs, the analysis of system stability is conducted in
linearized model of power system [3,5]. Moreover, the tuning of PSS
parameters towards robust design is ensured by various optimization
techniques. Over the last few decades, various optimization approaches
have been taken into consideration for robust PSS design [5–14].
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Previously proposed optimization techniques can be classified as shown
in Fig. 1.

The application of frequency domain based classical optimization
technique such as body plot, root locus and deterministic technique
such as sequential quadratic programming have been found for PSS
design in [8,15] and [5] respectively. Due to the difficulties and
limitations of those techniques to solve non-linear and non-differenti-
able optimization problem, the application of heuristic techniques got
popular in this field. Various heuristic algorithms such as tabu search
(TS) [9], simulated annealing (SA) [16], and genetic algorithm (GA)
[17] are most widely used algorithms in last decades. However, some
deficiencies have been identified in heuristic algorithms such as local
minima stagnation, premature convergence, difficulties of control
parameter selection [18]. Later on, some higher version of heuristic
algorithm known as metaheuristic techniques have been developed and
applied to design multi-machine PSSs. The most popular metaheuristic
algorithms, for example, particle swarm optimization (PSO) in [10,11],
differential evolution algorithm (DEA) in [12], bacterial foraging
optimization algorithm (BFOA) in [7] are reported to tune PSSs in
multi-machine system. However, previously recommended most of the
algorithm's performance deteriorates when a huge number of para-
meters to be optimized for large multi-machine power system.
Moreover, PSS parameter optimization is a complex multimodal
optimization problem and it is very difficult to optimize. In order to
overcome these type of limitations, the modified version in [13,19] and
hybrid version of optimization algorithm in [14,20,21] are recom-
mended for PSS design. Although the modification or combination of
different algorithms together may achieve partial success, but the
overall computation burden and complexity increase.

Backtracking search algorithm (BSA), a relatively new metaheur-
istic search algorithm, is claimed to solve complex optimization
problem mitigating the major limitations of other algorithms. It is
important to testify the scope of BSA in real world optimization
problem. This research comes forward to investigate the applicability
of BSA for robust PSSs design in large power system. In order to
conduct this research, the stability problem of a multi-machine power
system is formulated to an optimization problem using the LTI state
space linearized model. After that, the BSA is employed to solve the
formulated optimization problem which corresponds mainly the relo-
cation of system eigenvalues in a complex s-plane. Later on, the
optimized parameters of PSSs obtained from linearized model are used
for non-linear model of the power system to conduct a detailed
analyses in time domain approach. The complete analyses are com-
pared with other two algorithms, namely BFOA and PSO. Furthermore,
comparative study is conducted on two different benchmark power
systems to scrutinize the design performance variation with system
size. The assessments of the BSA are based on the statistical analysis of
solutions, stability analyses of the linear and non-linear models. The
statistical analysis is conducted in terms of solution quality and
consistency. The stability analysis of the linear model is used to
compare the performance of eigenvalue shifting in the complex s-
plane. On the other hand, the stability analysis of the non-linear model

is used to evaluate the oscillation damping in terms of settling times
and overshoots.

2. Problem formulation

2.1. Power system stabilizer

A PSS is the only damping scheme used along with synchronous
generator to detect and suppress power system oscillations shown in
Fig. 1. The basic block of PSS is the two stages lead lag controller with a
gain and a washout block [3]. The input of PSS is usually the speed
deviation of rotor [3,5]. From the synchronous machine theory, the
output of a generator can be controlled by either changing rotor speed
or excitation voltage [2]. Therefore, the working principle of PSS is to
detect oscillations to its input and provide required supplementary
signal to generator's excitation system to control the active power
generation by the generator. The proper selection of the time and gain
constants within their boundary limits in Eq. (1) is the main design
problem for overall power system stability [2,3,22]. Hence, the value of
these quantities are optimized to protect system from instability by
providing fast and required damping as shown in Fig. 2.
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4, min 4 4, max (1)

2.2. System modelling

A power system can be defined by a set of non-linear differential
equations as like Eq. (2) [3,5].

x f x u
y g x u

̇ = ( , )
= ( , ) (2)

In order to conduct the stability analysis, the entire system is
represented in LTI model. The formulation of LTI model is performed
in time domain state-space approaches [3]. In order to simplify the
entire system modelling burden, the power system toolbox (version 3)
from Graham Roger's book is used [3]. The final LTI state -space model
is represented as follow -

x Ax Bu
y Cx Du

̇ = +
= + (3)

2.3. Stability analysis

The eigenvalues of the state matrix A are calculated as

λ eig A= ( )i (4)

Fig. 1. Classification of different optimization techniques used for power system
stabilizer design.

Fig. 2. Power system stabilizer with static exciter model.
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According to the theory of advanced control system, system stability
can be determined easily based on the location of eigenvalues in s-place
(complex plane) [2,3]. System is unstable if any eigenvalue is located in
right side of s-plane. Therefore, all eigenvalues are required to move to
the left hand side. Additionally two quantities of each eigenvalues
contribute to ensure fast and sufficient damping [2,3]. The quantities
are the damping ratio and damping factor. They are defined as:

σ real λ= ( )i i (5)

ζ σ

σ ω
= −

+
i

i

i i
2 2

(6)

where, i=1, 2, 3…n and n is the total number of eigenvalues in the
power system.

2.4. Cost function

Although many formulation approaches have been developed and
used before to design damping controller, the D-shaped objective
function in Eq. (7) is proven very significant for the analysis of power
system stability [23]. Fig. 3 depicts the detail formulation of D-shaped
objective function. The alternative term of objective function is the cost
function. The value of this cost function is supposed to minimize and
eventually the eigenvalues are shifted towards the area of stability.

∑ ∑ ∑ ∑f σ σ a ζ ζ= ( − ) + ( − )
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np

σ σ
ij
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ij

=1 ≥
0

2

=1 ≤
0
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ij ij0 0 (7)

3. Multi-machine benchmark power system

This research is conducted in two benchmark power systems [3]: i)
2-AREA 4-Machine power system shown in Fig. 4, ii) 5-AREA 16-
Machine power system shown in Fig. 5. The purpose of using two test
system is to investigate the deviation in system damping with increase
of system size using different design algorithms.

3.1. 2-AREA 4 machine system

This is the widely used and recommended benchmark test system to
study power system oscillations [2,3]. In this test system, both the local
and inter-area modes of oscillations can be investigated properly. This
system is comprised with 4 identical generators equipped with identical
type of turbine governor, static excitation system. Each generator has a
PSS to provide damping over growing oscillations. G1 and G2 are in
area 1 while G3 and G4 are in area 2. Area 1 connected with area 2
through double circuit tie lines. System after subjected to a fault, G1
oscillates against G2 and G3 oscillates against G4 for local mode of
oscillations. Moreover, generators G1 and G2 in area 1 oscillates

against generators G3 and G4 in area 2 for inter-area mode of
oscillations.

3.2. 5-AREA 16 machine system

This is gigantic benchmark power system consisting of 16 gen-
erators and 68 bus shown in Fig. 5. There are 5 areas in the system by
means of modal analysis [3]. Generators 15 is in area 1, Generator 14
in area 2, Generator 16 in area 3, Generators 1–9 are located in area 4
and Generator 10–13 are in area 5. Area 4 is connected with area 5
through 3 tie lines. Area 3 is connected to area 5 through 2 tie lines.
One tie line is between area 2 and area 3.

4. Backtracking search algorithm

BSA is a nature inspired optimization algorithm developed recently
by Pinar Civicioglu [24]. Its simplified and unique structure make it a
choice to solve real world multimodal optimization problems. Unlike
other search algorithms, BSA is highly capable to handle large
dimensional problem more accurately. It has only one control para-
meter and the sensitivity to control parameter selection is almost
absent. It is a population based algorithm. It uses large number of
population to move towards optimum solution. The unique concepts of
this algorithm are the historical population and map matrix. The path
for optimum solution is defined by the historical population for each
movement. In order to overcome the local minima traps, BSA use the
historical population to explore new solution field as well as exploit
better solution within a solution field. The historical population works
like the memory of search population and help to find optimum
direction to obtain solution. On the other hand, map matrix reveals
the required adjustment to move search direction in order to ensure
precise movement in exploitation search. Therefore, optimum solution

Fig. 3. Formulation of multi-objective D-shaped cost function for stability analysis in s-plane. a) Stability defined by expected damping ratio; b) Stability defined by expected damping
factor; c) Combination of expected damping ratio and factor.

Fig. 4. Single line diagram of 2-AREA 4 machine benchmark power system.
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is guaranteed based on search exploration and exploitation simulta-
neously. The working principle of BSA is composed of five main steps
described below [24]:

Step 1: Initialization
The primary population and historical population of BSA are

generated based on uniform distribution (∪) within the boundary
constraints. If the optimization problem dimension and population
size are D and N respectively for the optimization, then each
individual of main population (Popi) and historical population
(Hisi) are initialized as follow:

Pop low upPrimary population, ~ ∪ ( , )n d d d, (8)

His low upHistorical population, ~ ∪ ( , )n d d d, (9)

y f PopFitness value, = ( )pop (10)

where n N∈ {1, 2, 3, ..., } and d D∈ {1, 2, 3, ..., }. The search space for
PSS parameters (following Eq. (1)) are defined by two row vectors lowd

and upd.
Step 2: Selection-I

if a b then His Pop a b< : = | , ~ ∪ (0, 1) (11)

His permuting His: = ( ) (12)

Step 3: Mutation
The initial value of trial population is known as the mutant.

Mut Pop R His PopInitial trial population, = + . ( − ) (13)

R randnStandard Brownian−walk, = 3⋅ (14)

where, randn is the build-in function for generating normal distribu-
tion number (0–1).

Step 4: Crossover
This part generate the final form of trial population that complies

within the optimization boundary constraints. The crossover of BSA
is consisted of two sections:
Step 4 (a): Part-1

This process control the number of elements of individuals to be
muted by generating binary map matrix having same size of Pop. It
decides which individuals to be manipulated and which will be
unchanged through mutation process. The formulation of map
matrix is based on Eqs. (15) and (16).

mapMap matrix initialization, = 1N D(1: ,1: ) (15)

⎪

⎪

⎧⎨⎩Trial
Pop if map
Mut if map

Final trial population, : =
= 1
= 0n d

n d n d

n d n d
,

, ,

, , (17)

Step 4 (b): Part-2
Boundary condition checking.

Trial low rand up low

Trial low Trial up

= + ⋅( − ),

if( < ) or ( > )
n d d d d

n d d n d d

,

, , (18)

Step 5: Selection-II

In this section, the trial population from Eq. (18) are used to
evaluate the cost function again and corresponding fitness values are
determined using Eq. (7). The calculated fitness values are then
compared with the fitness values (ypop) of main population (Pop) to
query any fruitful discovery as shown in Eqs. (19) and (20).

y f TrialTrail population Fitness values = ( )trial (19)

Pop Trial if y y= , >
n n n Trial n Pop, , (20)

To know more about BSA in details, interested readers are referred
to its original paper [24]. The following section will depict the major
steps to explain the application of this algorithm.

5. BSA implementation for multi-machine PSS design

The entire design for multi-machine PSS using BSA is categorized
into three major sections. The use of power system toolbox (version 3)
simplifies the overall process. For simplicity and understanding, the
overall design procedures are depicted in Fig. 6. The major work
functionalities are summarized as follow:

Section 1:

This section is associated with the core steps of BSA technique.

• Part 1: Firstly the BSA is specified with its population size,
dimension size, number of generation and control parameter etc.

• Part 2: The boundary limits for search space are defined here using
two row vectors (low, up). These two vectors correspond PSS
parameters limits.

• Part 3: In this part, Step 1 from BSA are performed. The following
Sections 2 and 3 are incorporated along with this part also.

• Part 4: Steps 2–5 from BSA are followed in this part.

• Part 5: Optimized results are obtained when number of executions
meet the maximum generation.

Section 2:

This section deals with determination and selection of eigenvalues

from state matrix. The purpose of this section is to sort out the things
for calculating cost function value using the given population.

• Part 1: The input (i.e. the PSS parameters) of this section is the BSA
population. The part is associated with organization of PSS para-
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meters according to the data format of power system toolbox.

• Part 2: The organized PSS data along with test power system data
are processed to get the system state matrix (A) of linear power
system using power system toolbox.

• Part 3: The eigenvalues (λi) are determined from the system state
matrix (A).

• Part 4: Damping factor (σi) and damping ratio (ζi) are calculated for
each eigenvalue using Eqs. (5) and (6).

• Part 5: The eigenvalues having negative damping factor (σ < 0) and
very high damping ratio (ζ > 0.95) are considered to be zero
eigenvalues and those have no influence over system oscillation at
all. Non-zero eigenvalues located outside of D-shaped stability
region are considered to calculate the cost function value using
Eq. (7).

Section 3:

This section deal with the toolbox used for power system linearized
model.

• Part 1: Import the data file for test power system

• Part 2: Run load flow analysis

• Part 3: Determined reduced Y matrix

• Part 4: Initialize the state variables (statei), its rate of change
(dstatei) and system state matix (A) for time step t=1.

• Part 5: At time step t=2, sequentially state variables are perturbed
and estimate the value of dstatei. System state matix (A) is
recalculated for each perturbation of state variable.

• Part 6: The formation of final state matrix (A) is done in this part.

6. Results and discussion

The power system data are taken from the power system toolbox
(version 3) [3]. For each PSS, the constants K, T1−T4 are required to
optimize. The value of Tw is set to 10 [23]. The search boundaries for

time constants are 0.01–2 s while for gain constants are 0.01–100 [23].
Therefore, the number of PSS optimizing parameters are 4 and total
number of parameters to be optimized are 20 and 80 for 2-AREA
system and 5-AREA system respectively. The weight factor used in cost
function formulation is selected as 10 following previous researches
[3,23]. The expected damping ratio and damping factor are selected to
0.15 and −1.0 respectively. The simulation for two systems are
conducted individually and all the data are recorded for further
analysis. Total simulation times in non-linear model are 10 s for 2-
AREA system and 15 s for 5-AREA system respectively. Fault has been
applied within this time. PSS parameters are optimized by BSA
optimization along with other standard version of PSO and BFOA.
The simulation settings for each algorithms (and test systems) are
stated in Appendix A section. In the analysis, PSS designed by BSA,
BFOA and PSO are denoted as BSA-PSS, BFOA-PSS and PSO-PSS
respectively.

The solution consistency achieved by optimization algorithms is
very important to investigate their performance. Therefore, simulations
for linearized model have been conducted 25 times for each algorithms.
The solutions (cost values) from 25 times simulations for 2-AREA
system are plotted as box and whisker plots using MATLAB® shown in
Fig. 7. According to the box plot, it is observed that the solution
attained by BSA is much consistent spread in narrower region
(0.2756–0.1069) compared with BFOA (0.6525–0.3539) and PSO
(1.2042–0.5691). This characterizes BSA as a good algorithm for a
consistent solution than others.

The best solution achieved by each algorithms are enlisted in
Table 1 for both multi-machine systems. The optimized PSS para-
meters from the best solutions are listed in Table 2 and Table 3 for 2-
AREA and 5-AREA Systems respectively. System stability analysis in
linear and non-linear models are conducted using the optimized
parameters from the best solutions. Stability analysis in linear model
is concentrated for 2-AREA system by plotting eigenvalues in s-plane.
While 5-AREA System is accounted to focus the stability study using
non-linear model.

Fig. 5. Single line diagram of 5-AREA 16 machine benchmark power system.
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6.1. System stability in linear model

The eigenvalues obtained from system state matrix (A) using
optimized parameters from Table 2 is plotted in s-plane. In Fig. 8,
the depicted brown line represent the D-shaped stability region for
electromechanical modes. From Fig. 8, the electromechanical modes
for BSA-PSS have been achieved the minimum expected damping ratio
while BFOA-PSS and PSO does not obtain for some specific modes.
Although, BSA-PSO does not achieve desired minimum damping factor
for one electromechanical modes. However, that specific mode has very
high damping ratio ( > 0.85) and therefore, it does not affect system

Fig. 7. Solution consistency checking: box and whisker plots drawn from 25 individual
simulations for BSA, BFOA and PSO in 2-AREA system.

Fig. 6. BSA implementation block diagram for multi-machine PSSs optimization design.

Table 1
Best solution (cost values) obtained by each algorithms for 2-AREA and 5-AREA systems.

System Cost function values

BSA BFOA PSO

2-AREA 0.10685 0.35395 0.56908
5-AREA 4.76445 10.3127 6.4688
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very much. On the other hand, PSO-PSS has modes that are very poor
in terms of damping factor and ratio. In comparison, BSA based design
perform significantly better to move oscillating modes into D-shaped
stable region.

6.2. Stability check in non-linear model

The amount of damping is visualized in non-linear simulation of
power system in terms of settling time and overshoot. The setting time
represent how fast the system will get return to its stability. On the
other hand, system's capability to deal with transient moment is
ensured by the value of overshoot. In a practical scenario, the size of
power system is relatively large and vast number of PSS parameters are
required to optimize. It is a challenge for optimization algorithms to
perform consistently with different system size. Therefore, PSSs
optimization for two different systems are considered to investigate
their design performance which ultimately represent the viable opti-
mization algorithm. System oscillations have been initialized by apply-
ing a three-phase fault at Bus 9 (between line 9–13) and at Bus 1
(between line 1–2) for 2-AREA and 5-AREA multi-machine systems
respectively. Both systems are affected severely due to three-phase
fault.

Table 3
Best optimized parameters using each optimization algorithms for 5-AREA system.

Algorithms K T1 T2 T3 T4

BSA PSS1 7.4796 0.8329 0.8247 0.5677 0.0786
PSS2 4.1629 0.7910 0.1020 0.6587 1.1224
PSS3 4.1049 1.0510 0.4939 0.5558 0.6085
PSS4 5.1507 0.7397 0.0408 0.5298 0.7585
PSS5 1.3900 1.2361 0.6996 0.5546 0.8911
PSS6 1.9086 0.9429 0.7705 0.7013 0.9365
PSS7 10.2108 0.8692 1.0375 0.8644 1.3098
PSS8 9.3250 0.3292 0.9987 0.5302 0.0200
PSS9 11.1997 0.4045 1.0404 0.6427 0.0335
PSS10 6.9675 0.8119 1.6054 1.4964 0.2325
PSS11 6.9854 0.3095 0.0124 0.4184 1.1249
PSS12 3.3121 1.1550 0.7626 0.8992 0.0608
PSS13 11.8973 1.0895 0.5557 0.8760 0.9437
PSS14 14.7728 0.9819 0.6763 1.7135 0.8104
PSS15 13.0235 0.8943 0.6299 0.4798 0.7965
PSS16 12.8661 1.4113 0.5436 0.6029 1.4328

BFOA PSS1 16.5316 0.6521 0.0201 1.9412 1.5652
PSS2 3.5332 0.4751 0.0735 0.4905 0.3091
PSS3 13.1333 0.3468 0.1441 0.3233 0.5532
PSS4 3.0055 0.9648 0.0912 0.7740 1.3309
PSS5 4.0030 0.8115 1.6095 0.3723 0.9474
PSS6 0.6793 0.9515 0.6399 0.6646 0.1315
PSS7 4.0797 0.3238 0.2213 1.6175 1.7123
PSS8 9.3228 1.5343 0.8599 0.0347 1.6630
PSS9 9.5229 0.9072 1.7342 1.8482 0.9841
PSS10 6.7403 1.1404 1.5348 1.2845 0.0358
PSS11 17.6909 0.2237 1.4312 0.1089 1.0350
PSS12 2.1094 1.4463 0.8521 1.4056 0.0758
PSS13 13.5247 1.5165 1.3539 1.4165 1.2115
PSS14 2.4333 0.5376 0.8575 0.8368 0.5892
PSS15 17.3905 1.8248 1.4358 1.4164 0.7714
PSS16 21.8207 1.6825 0.6476 1.2471 1.4104

PSO PSS1 24.6676 0.6798 0.0224 1.9914 1.4499
PSS2 3.5179 0.4735 0.0735 0.5011 0.3037
PSS3 13.2826 0.2963 0.0176 0.3066 0.6196
PSS4 3.4820 1.0126 0.0555 0.7065 1.1751
PSS5 2.9444 0.9895 1.2069 0.3457 0.9446
PSS6 0.6991 0.9894 0.2901 0.6593 0.1643
PSS7 3.9415 0.2748 0.0719 1.6390 1.2445
PSS8 9.3230 1.6421 1.0587 0.9589 1.6628
PSS9 8.3219 0.9190 1.5360 1.7655 0.8654
PSS10 6.6366 1.2352 1.4388 1.2504 0.0125
PSS11 17.8621 0.2218 1.5133 0.3029 1.0523
PSS12 1.2670 1.4354 0.8521 1.5852 0.0188
PSS13 13.5618 1.4635 1.3777 1.5125 1.0893
PSS14 1.1139 0.2146 0.8439 0.9206 0.7568
PSS15 15.8296 1.7756 1.4196 1.4049 0.8018
PSS16 21.7997 0.8181 0.6282 1.2477 1.4392

Fig. 8. Comparative progress of electromechanical modes in D-shaped region for best
optimization solution in 2-AREA system.

Fig. 9. Inter-area mode between G1 and G4 (W1-W4) for three phase fault at bus 9 of 2-
AREA system.

Table 2
Best optimized parameters using each optimization algorithms for 2-AREA System.

Objective functions K T1 T2 T3 T4

BSA PSS1 7.7483 0.0341 0.0100 0.4213 0.0100
PSS2 3.3929 0.5471 0.8452 1.7415 0.2853
PSS3 9.7805 1.9169 0.5148 0.0391 0.0100
PSS4 15.1784 2.0000 1.7374 0.0100 0.2618

BFOA PSS1 8.6324 0.9751 0.7540 0.2903 0.1154
PSS2 5.1218 1.0584 0.9204 1.3847 1.1607
PSS3 6.8648 0.7150 0.3188 1.6174 0.3783
PSS4 6.5016 0.2418 0.7024 1.1174 0.9842

PSO PSS1 9.1542 0.7601 0.5087 0.1762 0.9241
PSS2 16.0642 0.3158 0.9641 1.0557 0.8161
PSS3 7.5012 0.6102 0.3214 1.5811 0.3183
PSS4 9.2315 0.6865 0.8562 0.6531 0.7041
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6.2.1. 2-AREA system
For this system, the three-phase fault is applied at 100 ms for

100 ms duration and the total simulation time 10 s. Two active inter-
area modes of oscillations are considered to investigate the improve-
ment of system damping using different optimization algorithms
shown in Figs. 9 and 10. Generator 1 in Area 1 oscillates against

Generator 4 in Area 2 and Generator 2 in Area 1 oscillates against
Generator 3 in Area 2 due to inter-area oscillations. Oscillation for
mode W1-W4 is damped completely at 4.55 s, 7.7 s and 9.85 s using
BSA-PSS, BFOA-PSS and PSO-PSS respectively while the overshoot is
comparatively much lower for BSA-PSS than BFOA-PSS and PSO-PSS.
Moreover, oscillation for mode W2-W3 is also suppressed faster using
BSA-PSS than BFOA-PSS and PSO-PSS. Although, the overshoot in
case of second mode (Fig. 10) are almost equivalent for BSA-PSS and
BFOA-PSS except for PSO-PSS. In brief for 2-AREA system, stability is
achieved successfully using PSSs designed by all three optimization
algorithms. Moreover, BSA based design performs faster stability

Fig. 10. Inter-area mode between G2 and G3 (W2-W3) for three phase fault at bus 9 of
2-AREA system.

Fig. 11. Local mode in area 4 between G1 and G9 (W1-W9) for three phase fault at bus 1
of 5-AREA system.

Fig. 12. Local mode in area 4 between G2 and G3 (W2-W3) for three phase fault at bus 1
of 5-AREA system.

Fig. 13. Inter-Area mode between G2 in Area 4 and G13 in Area 5 (W2-W13) for three
phase fault at bus 1 of 5-AREA system.

Fig. 14. Inter-Area mode between G9 in Area 4 and G16 in Area 3 (W9-W16) for three
phase fault at bus 1 of 5-AREA system.

Fig. 15. Inter-Area mode between G10 in Area 5 and G15 in Area 1 (W10-W15) for
three phase fault at bus 1 of 5-AREA system.

N.N. Islam et al. Neurocomputing 237 (2017) 175–184

182



compared to BFOA and PSO based design.

6.2.2. 5-AREA system
Due to gigantic size of this system, the simulation time is taken 15 s

for a better and wider analysis of system damping. The three-phase
fault is applied at 500 ms of system simulation and remained for
150 ms. In order to analysis stability in large power system, 5 different
modes that include 2 local and 4 inter-area oscillations are considered
to study damping using different algorithms based design. In this
power system, Area 4 consists of large number of Generators and fault
is also applied within this area. Local mode oscillations within Area 4
are shown in Figs. 11 and 12 and inter-area mode oscillations of
different areas are shown in Figs. 13–16.

From Figs. 11–16, it is obvious that the system damping is not
achieved by BFOA-PSS and PSO-PSS except BSA-PSS. Although
oscillations keep growing for two local modes W1-W9 (Fig. 11) and
W2-W3 (Fig. 12), the performance of BFOA-PSS and PSO-PSs are
totally opposite to each other. In inter-area modes W2-W13 (Fig. 13)
W10-15 (Fig. 15), both BFOA-PSS and PSO-PSS achieve negligible
positive system damping and perform almost equal which ultimately
failed to lead system stability. However, after being affected severely,
the stability for all modes is achieved by BSA-PSO completely. In case
of inter-area mode W9-W16 between Area 4 and 3 (Fig. 14), BFOA-PSS
perform better than PSO-PSS without attaining stability while BSA-PSS
achieves. In mode W14-15 (Fig. 16), both BFOA and PSO based design
contribute to provide negative damping causing the system oscillation
worsen. While BSA based design provide positive damping leading the
system gets back stability faster. In summary, the weakness of other
algorithms are revealed through this comparative study in different
system size in case of PSS design. This means, performance of BFOA-
PSS and PSO-PSS depends on modes and may achieve negative
damping instead of positive damping.

7. Conclusion

This research has conducted a practical application of BSA techni-
que by designing PSSs in large multi-machine power system. The
performance of BSA is compared with BFOA and PSO techniques for
PSS design. Extensive analysis has been conducted to investigate the
feasibility of BSA that includes analysis in linear and non-linear models
of multi-machine power systems. Two different multi-machine (2-
AREA and 5-AREA) systems are considered to examine the design
performance variation with increase of system size. The comparative
study has been carried out in terms of solution consistency, moving
eigenvalues into stable regions and improving overall system damping.
Solution consistency is evaluated based on boxplots drawn from 25
individual simulations for each algorithm. From the results, it is found
that BSA is far superior to find a consistent solution than that of BFOA

and PSO. In linear model analysis, only BSA based design successfully
achieves expected damping ratio for all electromechanical modes.
Additionally, in non-linear analysis, BSA based systems attain suffi-
cient damping that suppresses system oscillations completely. Both
multi-machine systems possess positive and fast damping using BSA-
PSS. On the other hand, BFOA and PSO based design have achieved
relatively poor damping for the 2-AREA system than BSA-PSS.
However, in case of the 5-AREA system, stability is not achieved using
BFOA-PSS and PSO-PSS. Moreover, system oscillations become wor-
sen from the negative damping using BFOA and PSO based design for
the large 5-AREA system. That reveals the weakness of BFOA and PSO
algorithms for higher dimensional problem. Therefore, this research
recommends BSA as one of the unique optimization algorithm for the
PSS design in large power system.
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Appendix A

Linear model optimization Settings:

• 2-AREA system
1. Design Setting: expected design damping factor (σ0)=−1, expected

design damping ratio (ζ0)=0.15; problem dimension (D)=20;
2. Optimization Algorithm Settings:

1. - BSA Settings: population size (N)=25; generation (G)=500;
mixrate=1.0;

2. - BFOA Settings: population size (N)=25; generation (G)=500;
chemotactic steps=70; reproduction steps=5; elimination-dis-
persal steps=5; ped=0.25; C=0.05; mar=0.1; wat=0.2;
wre=10.

3. - PSO Settings: population size (N)=25; generation (G)=500;
cognitive constant, C1=2; social constant, C2=2; wmin=0.4;
wmax=0.9.

• 5-AREA system:
1. Design Setting: expected design damping factor (σ0)=−1, expected

design damping ratio (ζ0)=0.15; problem dimension (D)=80;
2. Optimization Algorithm Settings:

1. - BSA Settings: population size (N)=25; generation (G)=1500;
mixrate=1.0;

2. - BFOA Settings: population size (N)=25; generation (G)
=1500; chemotactic steps=70; reproduction steps=5; elimina-
tion-dispersal steps=5; ped=0.25; C=0.05; mar=0.1; wat=0.2;
wre=10.

3. - PSO Settings: population size (N)=25; generation (G) =1500;
cognitive constant, C1 =2; social constant, C2=2; wmin=0.4;
wmax=0.9.

References

[1] M.Z. Daud, A. Mohamed, M. Hannan, An improved control method of battery
energy storage system for hourly dispatch of photovoltaic power sources, Energy
Convers. Manag. 73 (2013) 256–270.

[2] P. Kundur, Power System Stability and Control, McGraw-Hill Education (India) Pvt
Limited, 1994.

[3] G. Rogers, Power System Oscillations, Kluwer Academic Publishers, 2000.
[4] H. Vu, J. Agee, Comparison of power system stabilizers for damping local mode

oscillations, IEEE Trans. Energy Convers. 8 (1993) 533–538.
[5] C. Li-Jun, I. Erlich, Simultaneous coordinated tuning of PSS and FACTS damping

controllers in large power systems, IEEE Trans. Power Syst. 20 (2005) 294–300.
[6] P. Kundur, M. Klein, G.J. Rogers, M.S. Zywno, Application of power system

stabilizers for enhancement of overall system stability, IEEE Trans. Power Syst. 4
(1989) 614–626.

[7] S. Abd-Elazim, E. Ali, Coordinated design of PSSs and SVC via bacteria foraging
optimization algorithm in a multimachine power system, Int. J. Electr. Power

Fig. 16. Inter-Area mode between G14 in Area 2 and G15 in Area 1 (W14-W15) for
three phase fault at bus 1 of 5-AREA system.

N.N. Islam et al. Neurocomputing 237 (2017) 175–184

183

http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref1
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref1
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref1
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref2
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref2
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref3
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref4
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref4
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref5
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref5
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref6
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref6
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref6
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref7
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref7


Energy Syst. 41 (2012) 44–53.
[8] K. Bollinger, A. Laha, R. Hamilton, T. Harras, Power stabilizer design using root

locus methods, IEEE Trans. Power Appar. Syst. 94 (1975) 1484–1488.
[9] M.A. Abido, A novel approach to conventional power system stabilizer design using

tabu search, Int. J. Electr. Power Energy Syst. 21 (1999) 443–454.
[10] A. Abido, Particle swarm optimization for multimachine power system stabilizer

design, Power Engineering Society Summer Meeting, 2001, (IEEE2001), pp. 1346–
1351.

[11] H. Shayeghi, H.A. Shayanfar, A. Safari, R. Aghmasheh, A robust PSSs design using
PSO in a multi-machine environment, Energy Convers. Manag. 51 (2010)
696–702.

[12] S. Panda, Robust coordinated design of multiple and multi-type damping controller
using differential evolution algorithm, Int. J. Electr. Power Energy Syst. 33 (2011)
1018–1030.

[13] H. Alkhatib, J. Duveau, Dynamic genetic algorithms for robust design of multi-
machine power system stabilizers, Int. J. Electr. Power Energy Syst. 45 (2013)
242–251.

[14] M. Mary Linda, N. Kesavan Nair, A new-fangled adaptive mutation breeder genetic
optimization of global multi-machine power system stabilizer, Int. J. Electr. Power
Energy Syst. 44 (2013) 249–258.

[15] E.V. Larsen, D.A. Swann, Applying power system stabilizers part II: performance
objectives and tuning concepts, IEEE Trans. Power Appar. Syst. 100 (1981)
3025–3033.

[16] M. Abido, Robust design of multimachine power system stabilizers using simulated
annealing, IEEE Trans. Energy Convers. 15 (2000) 297–304.

[17] Y. Abdel-Magid, M. Abido, Optimal multiobjective design of robust power system
stabilizers using genetic algorithms, IEEE Trans. Power Syst. 18 (2003)
1125–1132.

[18] E. Elbeltagi, T. Hegazy, D. Grierson, Comparison among five evolutionary-based
optimization algorithms, Adv. Eng. Inform. 19 (2005) 43–53.

[19] A. Khodabakhshian, R. Hemmati, Multi-machine power system stabilizer design by
using cultural algorithms, Int. J. Electr. Power Energy Syst. 44 (2013) 571–580.

[20] S.M. Abd-Elazim, E.S. Ali, A hybrid Particle Swarm Optimization and Bacterial
Foraging for optimal Power System Stabilizers design, Int. J. Electr. Power Energy
Syst. 46 (2013) 334–341.

[21] A. Khodabakhshian, R. Hemmati, M. Moazzami, Multi-band power system
stabilizer design by using CPCE algorithm for multi-machine power system, Electr.
Power Syst. Res. 101 (2013) 36–48.

[22] P. Kundur, M. Klein, G. Rogers, M. Zywno, Application of power system stabilizers
for enhancement of overall system stability, IEEE Trans. Power Syst. 4 (1989)
614–626.

[23] N. Niamul Islam, M. Hannan, H. Shareef, A. Mohamed, M. Salam, Comparative
study of popular objective functions for damping power system oscillations in
multimachine system, Sci. World J. 2014 (2014).

[24] P. Civicioglu, Backtracking Search Optimization Algorithm for numerical optimi-
zation problems, Appl. Math. Comput. 219 (2013) 8121–8144.

Naz Niamul Islam received the B.Sc. degree in Electrical
and Electronic Engineering from Khulna University of
Engineering & Technology (KUET), Bangladesh in 2009,
and the M.Sc. degree in Electrical, Electronic, and System
Engineering from Universiti Kebangsaan Malaysia (UKM),
Bangi, Malaysia in 2015. His current research interests are
in charging management of plug-in electric vehicles, arti-
ficial intelligence and smart grid, application of optimiza-
tion and game theory in power system, and stability of large
power system.

M.A. Hannan received the B.Sc. degree in electrical and
electronic engineering from the Chittagong University of
Engineering and Technology, Chittagong, Bangladesh, in
1990, and the M.Sc. and Ph.D degrees in electrical,
electronic, and systems engineering from Universiti
Kebangsaan Malaysia (UKM), Bangi, Malaysia, in 2003
and 2007, respectively. Currently, he is a Professor with the
Department of Electrical Power Engineering, Universiti
Tenaga Nasional. His research interests are in intelligent
signal processing, intelligent embedded system, intelligent
inverter controller and artificial intelligence.

Hussain Shareef received his B.Sc with honours from
IIT, Bangladesh, MS degree from METU, Turkey, and Ph.D
degree from UTM, Malaysia, in 1999, 2002 and 2007,
respectively. He is currently an associate professor at the
Electrical Engineering Department, United Arab Emirates
University, UAE. His current research interests are power
system deregulation, power quality, artificial intelligence
and power system distribution automation. He is a member
of IEEE.

Azah Mohamed received her B.Sc from University of
London in 1978 and M.Sc and Ph.D from Universiti Malaya
in 1988 and 1995, respectively. She is a professor at the
Department of Electrical, Electronic and Systems
Engineering, Universiti Kebangsaan Malaysia. Her main
research interests are in power system security, power
quality and artificial intelligence. She is a senior member
of IEEE.

N.N. Islam et al. Neurocomputing 237 (2017) 175–184

184

http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref7
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref8
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref8
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref9
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref9
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref10
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref10
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref10
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref11
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref11
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref11
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref12
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref12
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref12
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref13
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref13
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref13
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref14
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref14
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref14
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref15
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref15
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref16
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref16
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref16
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref17
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref17
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref18
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref18
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref19
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref19
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref19
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref20
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref20
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref20
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref21
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref21
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref21
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref22
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref22
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref22
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref23
http://refhub.elsevier.com/S0925-2312(16)31213-9/sbref23

	An application of backtracking search algorithm in designing power system stabilizers for large multi-machine system
	Introduction
	Problem formulation
	Power system stabilizer
	System modelling
	Stability analysis
	Cost function

	Multi-machine benchmark power system
	2-AREA 4 machine system
	5-AREA 16 machine system

	Backtracking search algorithm
	BSA implementation for multi-machine PSS design
	Results and discussion
	System stability in linear model
	Stability check in non-linear model
	2-AREA system
	5-AREA system


	Conclusion
	Acknowledgement
	Appendix A
	References




