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Summary

Integration of the distributed generators into a distribution system encounters

various system issues, and out of those islanding detection is 1 of the major

protection problems to focus on. Many detection schemes have been proposed

in the recent past, which possess a nondetection zone (NDZ) and usually

neglect to provide a justification for the selected detecting features among all

possible measures. Sensitive feature selection and minimization of NDZ are

the 2 major objectives of this study. This paper comprises of 2 operational

modes of designed IEEE 13‐bus test feeder (offline mode and online mode of

operation). The offline mode of system operation focuses on selecting the opti-

mal feature vectors using the proposed “modified multiobjective differential

evolution algorithm” coupled with an extreme learning machine classifier.

The modified multiobjective differential evolution algorithm‐extreme learning

machine is applied to find out 2 optimum feature vectors, one by considering

accuracy and minimal features and another one by dependability with a single

feature as its objective functions. The online mode concentrates on the proposed

new hybrid islanding detection method comprised of both passive and active

detection techniques. Passive technique implements a decision tree designed by

using the obtained accuracy‐based feature vector. Decision tree triggers the active

method on suspecting the runtime instances as non‐islanding events to reduce the

NDZ. Active method uses the obtained dependability‐based feature vector as an

injecting parameter. The test results indicate the efficiency and accuracy of the

proposed approach under different circumstances of power mismatch.
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1 | INTRODUCTION

Countries have achieved a more diversified energy mix with the growth in community ownerships, which have led to an
evolution of microgrids.1 Microgrids can be portrayed as small‐scale, localized distributed generators (DGs) installed
near the load, comprising of their own power resources, generation, and storage. DGs encompassing renewable energy
sources include wind farms, photovoltaic farms, small‐scale hydroplants, fuel cells, and microturbines. Integration of
DGs with utility grid using the concept of microgrids comes with many challenges. One of the major technical issues
related with the interconnection of DGs is power islanding.

According to the IEEE standard 1547‐2003,2 an island can be defined as a condition where DG isolates from the grid
and independently meets the local utility loads. This creates safety problems and power quality issues for the utility,
along with the inability to maintain the voltage and frequency within acceptable operational limits. Thus, it becomes
an essential issue to detect the instance of islanding and protect the DG. The IEEE standard defines a time of 2 seconds
for islanding detection from the time of occurrence.3 To have a clear idea about the islanding phenomenon, it becomes
essential to draw attention towards its 2 significant characteristics. The first characteristic is known as nondetection
zone (NDZ) criterion. The decisive factor NDZ can be defined as the range of power difference between the DG and load
where the islanding detection technique fails to detect the test conditions. The second characteristic relates to the load
types that can be modelled as a parallel RLC circuit and located in the islanded network. RLC load circuits are basically
used for islanding analysis as they form the worst situations for islanding detection by the relevant schemes. Detection
schemes for islanding are generally not affected by the nonlinear loads or loads with constant power.4,5

Detection of an islanding condition can broadly be distinguished into 2 schemes: remote and local schemes. Remote
schemes are communication‐based channels constructed between the DGs and the utility. Implementation of this
method is uneconomical because of expensive communication equipment. On the other hand, local schemes are further
categorized as passive and active detection method. Passive detection method follows a philosophy of computing and
comparing the associated system parameters with the preset threshold value to find the detection of islanding condition.
However, the active detection method works on the concept of deliberately injecting external perturbation continuously
into the system and that small variation builds a greater fluctuation in system parameters to detect the islanding situ-
ation faster.6

Passive detection techniques possess some major preferable advantages like faster detection, no power quality issues,
less complexity in design, and cost. System parameters for passive techniques play an important role in the detection of
an islanding condition. Voltage, current, power, frequency, harmonic distortion, and their corresponding rate of change
are considered as some of the detecting parameters for passive techniques. Several passive methods have been proposed
by the researchers in the recent past.7-13 However, all the suggested approaches possess a significant NDZ, as it is dif-
ficult to choose an appropriate threshold for the monitored system parameters. On the other hand, active detection tech-
niques can detect an islanding condition even in the case of zero power mismatches between load side demand and
generation and have a very small NDZ. Researchers have proposed various active methods by injecting system param-
eters such as current, voltage phase angle, harmonic impedance measurement, negative sequence current, rate of
change of frequency (ROCOF), and rate of change of sequence components of currents.14-19 The methods use positive
feedbacks in the control loops to speed up the parameter to violate the threshold, resulting a faster detection of an
islanded condition. But, the active method possesses a demerit of injecting perturbation in the system, which results
in a degradation of system power quality. In addition to that, this method has a reduced capability to detect an island
when there are several DGs supplying power to the same island.

To overcome the flaws of passive and active detection techniques, several HIDMs have been proposed. As per the
name assigned “hybrid,” these islanding detection methods (IDMs) use 2 different principles based on active and passive
techniques at a time with an objective to suppress the limitation of 1 technique by incorporating the advantages of the
other. Here, secondary IDM executes when the primary IDM fails to detect the islanding condition successfully. Several
HIDMs have been proposed by the researchers in the recent past.20-26 IDM presented in Menon and Nehrir20 uses the
positive feedback as active method and voltage unbalance as passive methods. Yin et al21 proposed an HIDM using rate
of change of voltage and adaptive reactive power shift. Mahat et al22 proposed an HIDM using rate of change of voltage
and real power shift. The passive technique based on Q‐f droop curve and active technique based on sandia frequency
shift are adopted in Vahedi et al.23 HIDM using ROCOF (passive) and sandia frequency shift technique (active) are pre-
sented by Vahedi et al.24 Zhou et al proposed a HIDM based on decision tree (DT) and positive feedback for distributed
generations in Zhou et al.25 By combining SMS, ROCOF, and under/over frequency relay, a HIDM is proposed in
Akhlaghi et al.26 HIDM suppresses the disadvantages of the both the passive and active methods. Thus, implementing
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hybrid detection approach improves the performance capability and efficiency of the technique. It reduces the NDZ and
power quality issues.

In this paper, a HIDM is approached along with a major focus on selection of the best feature to design an efficient
method for islanding detection. This paper is analysed in 2 modes: offline and online mode of operation.

1.1 | Offline mode of operation

Several detection techniques analysed and explained in references27-31 based on multiple features do not elaborate the
process of selecting the set of best features from the list of features extracted. Extraction of a large number of features in
real‐time environment increases the computational burden, and hence, the selection of minimum number of most
appropriate features for detection becomes an important concern. Along with that, feature selection (FS) reduces the
training time and computational time of a classifier for classification and improves the classification accuracy by elim-
inating the redundant features. Therefore, it is necessary to extrapolate a selection process for getting a universal detec-
tion feature set, which can secure all the DGs integrated with the utility.

This mode focuses on the selection of sensitive features that help in fast and accurate islanding detection. Hence, the
FS method has been elaborated thoroughly in this paper. Three major steps required to prepare a robust islanding detec-
tion technique are feature extraction, selection, and classification. Emphasizing on the selection of optimal features for
the IEEE 13‐bus system, 16 features are extracted from the voltage and current signals at a sampling frequency of
3.8 kHz. Best set of feature is selected by performing modified multiobjective differential evolutionary algorithm
(MMODEA) for all the DGs. Selected features are applied to an extreme learning machine classifier (ELM) classifier that
can discriminate between islanded and nonislanded conditions.

1.2 | Online mode of operation

This mode focuses on implementing the sensitive features in the suggested detection technique for classification during
the run time of the system. The proposed approach is a hybrid of passive IDM and active IDM. The passive method
opted here is based on the obtained optimal feature vector using a decision tree method as a classifier for accurate detec-
tion. This method possesses a smaller detection time, higher accuracy and reliability, along with a smaller NDZ. To
overcome the disadvantage of having a NDZ, passive method is coupled with an injection of disturbance into the sys-
tem, if required. To resolve the power quality degradation issue, the active method is initiated for a short duration
and is kept less than 3% of the feature variation. The proposed approach suppresses all the disadvantages of passive
and active IDMs and functions efficiently with multiple DGs in a system.

Designing a detection method, using a well‐justified set of feature is a major focus of this work. And thus, the major
contribution of this paper can be pointed as:

1. Hybrid islanding detection scheme accompanied with a proposed FS technique (MMODEA).
2. Feature selections are carried out based on 2 main objectives such as accuracy with number of features and depend-

ability with number of features.
3. Accuracy‐based feature set used to design the passive method of HIDM.
4. Dependability‐based feature set implemented in active method of HIDM.

Schematic representation of this paper is as follows: Section 2 covers detail about the designed system under study.
Section 3 subsequently represents the different cases and features undertaken for this study. Section 4 highlights the
idea of FS using multiobjective differential evolutionary algorithm followed by its analysis in Section 5. The proposed
HIDM is discussed in Section 6. Further, the performance analysis of the considered HIDM is presented in Section 7.
A detail discussion on the offline and online mode approach is presented in Section 8. At the end in Section 9, the con-
cise summary of the work done and the measure finding concludes this paper.
2 | SYSTEM UNDER STUDY

The microgrid structure undertaken for this study is designed considering the ethical standards of IEEE 13‐bus radial
distribution test feeder32 and extended with the DG integration. The schematic layout of 13‐bus test feeder is repre-
sented in Figure 1A.



FIGURE 1 System studied and its response. A, Schematic representation of modified IEEE 13‐bus test feeder. B, Three‐phase voltage and

current variations at the time of islanding in DG1
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The 13‐bus feeder is served by a substation transformer rating of 115/4.16 kV (delta/grounded wye). The feeder is
lightly loaded uniformly and covers about 8200‐ft length. There are 2 shunt capacitors at feeder ends, 1 of 200 kVAR
in all the 3 phases at node 6 and another of 100 kVAR on 1 of the phases (C phase) at node 13. The operating parameters
and model specifications are given in Table 1.

Expansion of feeder is done by integrating 3 types of DGs. The specification and rating of each DG are presented in
Table 2. DG1 at node 4 is a wind turbine‐driven doubly fed induction generator. The doubly fed induction generator is
modelled by incorporating an induction generator and an IGBT‐based pulse width modulation (PWM) converter. The
stator winding is coupled directly with the utility.33 However, the rotor winding is connected through an AC‐DC‐AC
PWM. DG2 at node 10 is an inverter‐based PV power generator coupled with a boost converter, and its MPPT technique
is based on incremental and conductance (InC) method.34 DG3 at node 8 represents a wind turbine type 4 power gen-
erating system. The type 4 wind turbine comprises of a synchronous generator linked with a diode rectifier, a DC‐DC
boost converter (IGBT based), and a DC‐AC IGBT‐based PWM converter.35 The model is designed on the podium of
MATLAB 2014/Simulink, and operation is based on IEEE 1547 Standards.
3 | CASES AND PARAMETERS FOR DATA GENERATION

For the purpose of differentiating between the islanding and non‐islanding scenarios, ample numbers of practically
assorted cases are performed so as to provide a firm dataset towards the application of MMODEA‐ELM technique.
Table 3 represents a detailed list of simulated cases used in this study.



TABLE 1 Model specifications

System Parameters Specifications

Operating frequency 60 Hz

Quality factor 1

Transformer—T1 4.16 kV/575 V

Transformer—T2 4.16 kV/1750 V

Transformer—T3 4.16 kV/575 V

Transformer—T4 115 kV/4.16 kV

DG1 load—L1 1.5 MW, 0.652 MVAR

DG2 load—L2 0.9 MW, 0.435 MVAR

DG3 load—L3 2 MW, 0.87 MVAR

Shunt capacitor—C1 200 kVAR

Shunt capacitor—C2 100 kVAR

TABLE 2 DG specifications

Type of DGs Rating

DG1 1.66 MVA (1.5/0.9 MVA)

DG2 1 MW

DG3 2.22 MVA (2/0.9 MVA)

TABLE 3 List of stimulated cases

Cases Studied Case Type Variations

Active power variation Islanding 0%‐±80%

Reactive power variation Islanding 0%‐±50%

Active and reactive power variation Islanding 0%‐±80%, 0%‐±50%

Load switching Non‐islanding Up to 20% overload

Capacitor switching Non‐islanding 0.5‐10 MVAR

Fault scenarios Non‐islanding Type LG, LL, LLG, LLL, LLLG
Fault resistance varying from 0 to 100 Ω

Voltage sag Non‐islanding 0.1‐0.9 p.u.

Voltage swell Non‐islanding 1.1‐1.8 p.u.

DG tripping Non‐islanding Tripping scheme: 1 DG, pair of DG
At different load variations
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3.1 | Islanding scenarios

To study the autonomous mode, several mismatch combinations of DG power generation and local load power con-
sumption in the interior of the island are simulated. The power mismatch scenario ranges between perfect mismatch,
small mismatch, and large mismatch on the basis of UL 1741 testing standards.36 Active power mismatch extended
between 0 and ±80%, whereas reactive power mismatch ranged from 0 to ±50%. The mismatch is so considered with
an intention of overcoming the NDZ difficulty. Figure 1B shows the voltage and current variations at the time 0.5 second
when the autonomous mode occurs. Cases are generated considering the RLC load as 1 of the worst case islanding sce-
narios. Events planned for generating the island as:
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Case1 : Small island: This includes the DG and local load. The island can be formed at buses 4, 8, and 10
individually.

Case2 : Medium island: This comprises of local loads and multiple DGs when disconnected at bus 3 from
the middle of the system model.

Case 3. : Large island: Taking into account all the DGs and loads of the system while getting disconnected
from the main substation at bus 1.30
3.2 | Non‐islanding scenarios

To facilitate the grid connected mode, 5 different cases of power system scenarios such as capacitor switching, load
switching, line fault conditions, power quality events, and DG tripping are simulated as non‐islanding events. The var-
iations made with respect to all the above scenarios are enumerated in Table 3.
3.3 | Features studied

Multiple features are usually considered as a feature vector to secure islanding detection from any possible variations in
the network. The most important reason of using different features is to allow the islanding detection technique with:

(a) Least NDZ at the DG location at reduced power mismatch.
(b) Application to multiple DG systems.
(c) Diversified operating conditions of the system.

In this work, all the combinations of system parameter indices focusing on multiple inverter‐based DGs are
measured. Along with that, every possible sensitive parameter of the system, the corresponding rate of change is also
considered. Altogether, 16 possible features are measured, which can be actively affected by both islanding and non‐
islanding cases.37 Features extracted in this study are mentioned in Table 4.
E 4 List of features studied

re Notation Feature Name (Magnitude in p.u.) Symbolization of Feature

Rate of change of voltage w.r.t. time dV/dt

Rate of change of frequency w.r.t. time df/dt

Rate of change of active power w.r.t. time dP/dt

Rate of change of reactive power w.r.t. time dQ/dt

Rate of change of voltage w.r.t. frequency dV/df

Rate of change of voltage w.r.t. active power dV/dP

Rate of change of voltage w.r.t. reactive power dV/dQ

Rate of change of frequency w.r.t. voltage df/dV

Rate of change of frequency w.r.t. active power df/dP

Rate of change of frequency w.r.t. reactive power df/dQ

Rate of change of active power w.r.t. voltage dP/dV

Rate of change of active power w.r.t. frequency dP/df

Rate of change of active power w.r.t. reactive power dP/dQ

Rate of change of reactive power w.r.t. voltage dQ/dV

Rate of change of reactive power w.r.t. frequency dQ/df

Rate of change of reactive power w.r.t. active power dQ/dP
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4 | PROPOSED FEATURE SELECTION APPROACH (OFFLINE MODE)

Features possess a complex relationship among each other which generates a demanding task of FS. Features individ-
ually may perform accurately for selection, but when performing together in the group may behave redundantly (or vice
versa). Hence, the selection of an optimal feature subset which can properly distinguish between the classes having
diversified properties becomes vital.

Depending on the evaluation criteria, FS algorithm can be broadly categorized into 2 types: filter approaches and
wrapper approaches.38 The major difference between these 2 is that the wrapper methods take the help of a classifier
learning process while evaluating the feature subset and filter approaches do not. For the islanding detection problems,
a filter approach named as backward and forward sequential FS is successfully implemented in Faqhruldin et al.30

Faster execution is 1 of the main advantages of filter approach, whereas the selection of large subsets and lesser gener-
ality are few of the limitations affecting its performance. However, on the other hand, the wrapper approach attains
better accuracy with lesser subsets and higher ability to generalize. In Samantaray et al and Kar and Samantaray,28,31

the authors implemented decision tree and fuzzy logic classifiers for FS to detect islanding condition based on wrapper
approach concept.

Selection of features itself is a challenging task, as the features themselves possess a complex relation with each
other. Along with that, vast search space increases the selection complexity as it increases exponentially with the num-
ber of features present in the dataset.39 Considering the above problem, a competent search technique is required. A
population‐based global optimization technique named as differential evolution (DE) technique was proposed by Storn
and Price in the year 1997. DE is a simple, reliable, robust, and efficient global searching method. Because of the
abovementioned advantages, DE is widely accepted by many researchers in different fields for FS. The detailed study
on DE for FS is explained in Ali et al.40

To deal with an optimization problem, a single objective may not satisfactorily address the multiple aspects of a
problem. Thus, a multiobjective optimization is favoured over a single objective optimization technique, particularly
in the case of complex dataset. Considering the wrapper FS method, many classification techniques have been used
by many researchers. Extreme learning method, a recent classifier algorithm, is a single feed forward network.41 Being
a recent technique, ELM is not extensively explored in the area of FS. However, ELM is known for its own advantages
of possessing an attractive property of noniterative linear solution, which speed ups the magnitude to 5 times and 6
times as compared to multilayer perceptron and support vector machine respectively.42 An ELM is used to improve
the stability of the algorithm and to provide a robust unified solution. Apart from that, ELM does not need a parameter
tuning and has less computational complexity. This paper present a MMODEA coupled with ELM classifier for multi-
ple inverter‐based DGs for islanding detection. The 3 basic objective functions are maximization of accuracy, maximi-
zation of dependability, and minimization of number of features for optimal FS. The proposed algorithm has been
applied to the generated dataset of 2064 instances, and the results with selected set of features reveal the efficiency
of the proposed model.
4.1 | Modified multiobjective differential evolution

4.1.1 | Basic differential evolution and its variant

Differential evolution being an optimization process helps in optimizing (maximize/minimize) problem w.r.t. a fitness
function, ie, minimize f (x)/maximize f (x).43 It randomly initializes a target vector of P size population with D dimensional
parameter vector. Generated target vector (Xi, G) can be represented as Xi, G = {Xi, G, 1,Xi, G, 2…Xi, G, D}, where i varies from
[1, P] and G represents the current generation. Each parameter of target vector is randomly initialized within a search
space, restricted by predefined lower bounds, XLB ¼ x1LB; x

2
LB…; x

D
LB

� �
, and upper bounds, XUB ¼ x1UB; x

2
UB…; x

D
UB

� �
.

Then, a mutant vector Vi, G of D dimension is generated using 1 of the mutation strategies DE/rand/1 as stated in 1.

Vi;G ¼ Xri1;G
þ SF Xri2;G

−Xri3;G

� �
;r1≠r2≠r3≠ i (1)

where ri1; r
i
2; r

i
3 are randomly selected solutions from Gth generation and SF is a scaling factor varying from [0, 1].

By performing a crossover technique on the individual solutions of target vector and mutant vector using 2, a trial

vector (Ui, G) is generated. The trial vector can be represented as Ui;G ¼ u1i;G; u
2
i;G…::u

D
i;G

n o
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uj
i;G ¼

v ji;G; if rand j 0; 1½ Þ ≤ Cr
� �

orj ¼ jrand

x j
i;G; Otherwise

(
(2)

Here, j = 1, 2...D, Cr is the crossover rate that varies between [0, 1], and jrand presents random integer within [1, D].
The fitness value of target vector and corresponding trial vector solutions are evaluated and compared using 3.

Xi;Gþ1 ¼
Ui;G; iff Ui;G

� �
≤ f Xi;G

� �
Xi;G; Otherwise

(
(3)

where i ranges from [1, P].
DE being an iterative process, mutation, crossover, and selection steps is repeated till the stopping criterion is

reached.
4.1.2 | Multiobjective

Multiobjective optimization is a multicriteria decision making technique that involves more than 1 objective function to
be optimized simultaneously. It involves minimization or maximization of multiple contradictory objective functions.
Feature selection can be considered as a multiobjective optimization problem, where the main objective is to minimize
the number of features and maximize the classification performance parameter. This can generate a Pareto front of
nondominated feature subset to meet the requirements of objective function.44

Expressing in mathematical form, the optimization of multiple objective functions can be represented as expressed
in 4.

optimize; F xð Þ ¼ optimum f 1 xð Þ; f 2 xð Þ;…f n xð Þf g (4)

Here, x represents all possible set of features of a dataset, n presents the number of objective function selected for
optimization, and optimum signifies either minimization or maximization depending on the objective functions. The
set of nondominated Pareto optimal solutions forms a Pareto front, and the best solution can be extracted based on
user's necessity.
4.1.3 | Modified multiobjective differential evolution

If the selection process of DE is closely analysed, it can be found that this step may miss out on some good solutions.
Thus, the selection step implemented here is inspired by elitism‐based nondominating sorting from NSGA‐II.45 Here,
the solutions obtained from target vector and trial vectors (each of size P) are merged to form a population of size
2P. Each solution of the population of size 2P is ranked and sorted based on nondomination principle. Hence, the
top best solutions of size P are selected for next‐generation based on nondomination rank and crowding distance.45

The proposed modified algorithm, MMODEA, operates for a number of independent iterations (NIter) to select the best
feature subset on the basis of objective functions as presented in flow chart (Figure 2).
4.2 | Extreme learning machine

Extreme learning machine is a feed forward artificial neural network algorithm with a single hidden layer. It has gained
huge attention among researchers because of its generality, learning speed, and consistency compared to other neural
network techniques.42 It has a salient feature of random selection of input weight and bias. It also facilitates the analyt-
ical determination of the output weight using Moore Penrose generalized pseudoinverse.46 ELM intends to attain mini-
mum training error as well as least norm of output weights. Thus, it provides the best results after overcoming the
traditional issues like local minima, learning rate, training period, and stopping criterion. Structure of preliminary
ELM is shown in Figure 3.

https://en.wikipedia.org/wiki/MCDM
https://en.wikipedia.org/wiki/Loss_function


FIGURE 3 Preliminary ELM structure

FIGURE 2 Algorithm for proposed

MMODEA
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ELM output (y) with the hidden nodes (L) is written in 5 as:

y ¼ ∑L
i¼1βigi xð Þ ¼ ∑L

i¼1βiG ωi; bi; xð Þ ¼ Hβ (5)

Here, x denotes input samples; ωi and bi represents randomly initialized weights and biases respectively;
gi(x) = G(ωi, bi, x) corresponds to output function for ith hidden layer; H and β stands for the output matrix of hidden
layer and weight respectively.47 For N distinct samples (xj, tj), j ∈ [1,N], the equation can be written as:

Hβ ¼ T (6)

where H ¼
h x1ð Þ
⋮

h xNð Þ

2
64

3
75 ¼

G ω1; b1; x1ð Þ ⋯ G ωL; bL; xNð Þ
⋮ ⋮ ⋮

G ω1; b1; xNð Þ ⋯ G ωL; bL; xNð Þ

2
64

3
75
N×L

, β ¼
β1
⋮
βN

2
64

3
75
L×1

, T ¼
T1

⋮
TN

2
64

3
75
N×1

and T is the

target matrix.
The only parameter to be evaluated in ELM is the output weight matrix β, which is calculated using least squares

estimation.

β ¼ H*T (7)

Here, H* = (HTH)−1HT known as Moore Penrose generalized pseudoinverse of the matrix H. ELM follows simple
procedures of 3 steps as:

1. Random generation of hidden parameter.
2. Evaluation of matrix H for hidden layer.
3. Evaluation of output weight β using 7.

The whole process for evaluating P can be completed with a single iteration; this makes the ELM significantly fast.
4.3 | Objective function formulation

The selection of the best features is done by considering the number of features and their performance results based on
the 2 objective functions. The performance parameters considered as objective functions in this study are dependability,
accuracy, and number of feature. They are evaluated from TP, TN, FP, and FN:

aÞ Dependability:D ¼ Predicted number of islanding cases
Summation of actual islanding cases

¼ TP
TP þ FN

(8)

bÞ Accuracy:A ¼ Summation of correct prediction
Summation of total number of actual cases

¼ TP þ TN
TP þ FP þ TN þ FN

(9)

Here, TP, TN, FP, and FN represents true positive, true negative, false positive, and false negative respectively. TP
and TN provide correct prediction for islanding and non‐islanding cases respectively. Whereas, FN and FP give a wrong
prediction of islanding cases as non‐islanding cases and vice versa respectively.

In the abovementioned analysis, dependability as represents in 8 states the correct prediction of islanded cases from
the total number of islanding cases. Dependability as an objective function reduces the rate of misleading. Accuracy is
considered as an important function because it measures the correct case prediction for both islanded and nonislanded
scenarios as shown in 9.
5 | ANALYSIS OF FEATURE SELECTION APPROACH

Considering almost every scenario of frequently occurring fault conditions in microgrid environment, the designed
model is studied and a close observation of variation of system parameters is done. The main objective of this work



CHANDAK ET AL. 11 of 22
is to design a HIDM, comprising of passive and active detection approach. To obtain a justified feature set for designing
a passive approach, MMODEA is implemented using 2 objective functions, such as accuracy and minimum number of
features. Similarly, to obtain a highly justified sensitive feature as an injecting parameter, MMODEA is again operated
using 2 objective functions: highest dependability with only 1 number of feature. Thus, the 2 differently obtained feature
sets are used to design the proposed approach. To extract the best possible feature set on the basis of objective function
independently, a total data set of 900 islanding cases and 1164 non‐islanding cases are tested in proposed FS algorithm
(MMODEA‐ELM). Table 5 shows the sample of output results, representing the best feature sets for islanding and
non‐islanding event classification based on dependability and accuracy individually.

The optimal feature set obtained on the basis of accuracy is used as passive parameter to study the variations,
whereas the feature subset obtained while considering the maximization of dependability as an objective function is
used as an active injection feature in the proposed HIDM. The obtained results clearly indicate that the feature vector
may contain 2 or more number of features so as to optimally justify the objective functions. However, to reduce the
computational burden during the feature extraction stage, the feature vector must be chosen, including minimum
number of features. Moreover, the selected feature set should ensure better performance in extremely noisy
environments.

Therefore, the obtained feature sets are further cross‐validated using ELM classifier at different noisy environments
(with SNR equal to 20 and 30 dB), and the corresponding results are depicted in Table 6. Results illustrate that the fea-
ture sets perform efficiently in 30 dB noisy environment, having dependability and accuracy more than 90%. However,
at 20 dB noise, the performance of objective functions decreases comparatively. On comparing all the obtained feature
subset based on the performance of objective function at 20 dB, the most effective feature set is found to be [F9] having
dependability as 94.77% and a feature set [F1 F2 F4] having accuracy as 96.68%.

To justify the results obtained from the above analysis, all the features from the selected feature vector are studied
during the online mode of the test system.
6 | PROPOSED HIDM (ONLINE MODE)

Feature sets selected on the basis of dependability and accuracy are used in designing the proposed HIDM. The
approach comprises of a passive detection and an active detection technique. The passive method is formed using the
preferred feature set with higher accuracy. Accuracy as an objective function gives the percentage of correct prediction
for both islanded and nonislanded case. Thus, a decision tree is planned using the features [F1 F2 F4] obtained from the
selected accuracy‐based feature vector. Passive method in the proposed approach gives an accuracy of 94.24%, which
leaves behind a NDZ as shown in Table 7. To reduce the NDZ to 0%, an active method is coupled with the passive detec-
tion method. The active method addresses an injection of disturbance into the system so as to speed up the feature
threshold violation while being disconnected from the grid. The disturbance injecting feature is opted according to
the dependability‐based feature set. Dependability gives a correct prediction of islanding cases from the total number
of islanding cases. So, the feature [F9] having higher dependability is selected for injection into the system. Moreover,
TABLE 5 Performance of proposed algorithm for feature selection based on dependability and accuracy

Features Dependability

[F2] 100%

[F8] 100%

[F9] 100%

[F15] 100%

Features Accuracy

[F1 F2] 100%

[F1 F2 F4] 100%

[F6 F8 F15] 100%

[F1 F2 F8 F15] 100%



TABLE 6 Performance of ELM classifier on selected feature vectors

At 30 dB Noisy Conditions

Features Dependability

[F2] 96.07%

[F8] 95.42%

[F9] 100%

[F15] 96.07%

Features Accuracy

[F1 F2] 98.70%

[F1 F2 F4] 98.88%

[F6 F8 F15] 97.54%

[F1 F2 F8 F15] 97.83%

At 20 dB Noisy Conditions

Features Dependability

[F2] 92.81%

[F8] 90.84%

[F9] 94.77%

[F15] 91.50%

Features Accuracy

[F1 F2] 95.52

[F1 F2 F4] 96.68%

[F6 F8 F15] 94.37%

[F1 F2 F8 F15] 94.66%

TABLE 7 Accuracy performance of DT for different power mismatch

Power Mismatch During Islanding Scenarios Detection Accuracy

±80% to ±60% active power variation 100%

±60% to ±40% active power variation 100%

±40% to ±20% active power variation 100%

±20% to ±10% active power variation 98.60%

±10% to 0% active power variation 78.48%

±50% to ±30% reactive power variation 100%

±30% to ±10% reactive power variation 99.25%

±10% to 0% reactive power variation 77.58%

Overall 94.24%
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for less sensitivity to the sudden change in load, feature [F9] gives higher responsiveness as the grid is absent to retain
the variations. Schematic representation of the proposed approach is represented in Figure 4.

The proposed approach is tested during the run time of the designed IEEE 13‐bus test feeder. While the test system
is operating, basic system parameters (ie, voltage, current, and frequency) are measured. These basic parameters are
instantly used to calculate the selected features F1, F2, and F4 representing dv/dt, df/dt, and dq/dt respectively. This
measurement and calculation of features is continuously observed with the run time of the system. On perceiving



FIGURE 4 Flow chart of the proposed offline and online approach
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any variation in the selected features, the decision tree is triggered for the next 5 cycles to study the type of disturbance
occurred in the system. The decision tree is planned such that it can easily differentiate the islanding and non‐islanding
conditions. Figure 5 presents the schematic layout of the decision tree using the features F1, F2, and F4 with their cor-
responding threshold values. The threshold setting is carried out in this study by repeated analysis of islanding and
non‐islanding events.

If the case tested in decision tree concludes to be an islanding event, then an immediate trip signal is triggered, else
the case is further validated through the proposed active method by injecting feature F9 as perturbation in the system
for another 5 cycles. The disturbance injected into the inverter‐based DG via a constant P‐Q‐based controller illustrated
in Figure 6.
FIGURE 5 Decision tree



FIGURE 6 Interface control strategy for each DG
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When the disturbance injection is triggered, feature F1 is observed. If feature F1 violates the second predefined limit
within ±15 p.u., then the missed out islanding event is detected with a trip signal. This approach reduces the NDZ to 0%
as the islanding events with smaller mismatches are easily detected.
7 | ANALYSIS OF PROPOSED HIDM

In real‐time measurements, the voltage, current, and frequency are measured from the point of common coupling of
microgrid and the corresponding DG ends. The basic measurements are evaluated to obtain the values of the predictor
vector set [F1 F2 F4]. These values obtained for 5 cycles during the run time are compared with the predefined thresh-
old values based on which the classification model of DT is planned and necessary control actions are implemented.
(A)

(B)

FIGURE 7 Scatter plot analysis to design a DT for setting threshold values: A, F1 versus F4 and B, F2 versus F4
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7.1 | Performance analysis of decision tree

An overall analysis to design a DT through scatter plot for all the instances is pictographically presented in Figure 7. On
observing Figure 7A, it is clearly visualized that maximum number of non‐islanding cases is clustered within 0 to 2 p.u.
range of feature F4 (taken in y‐axis). And feature F1 (taken in x‐axis) shows a clear distinction between islanding and
non‐islanding events at x‐axis = 2 p.u. However, the set point of 2 p.u. can be extended but will result in false detection
of an islanding event as non‐islanding and vice versa. Thus, the threshold value to detect an islanding and non‐islanding
event can be defined as (F4 < 2 p.u. and F1 > 2 p.u.) and (F4 < 2 p.u. and F1 < 2 p.u.) respectively. Further analysing
Figure 7B, for F4 > 2 p.u., the islanding and non‐islanding events can easily be discriminated by feature F2 (taken in x‐
axis) at an approximate value of 12 p.u. The set point of 12 p.u. can be reduced but will result in false detection of many
non‐islanding event as islanding. Thus, the value is considered such that it covers maximum and minimum threshold
(A)

(B)

(C)

FIGURE 8 Case study on non‐islanding event: A, variation in feature F4, B, variation in feature F1, and C, variation in feature F2
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attained by non‐islanding event and islanding event respectively. Consequently, the non‐islanding zone and islanding
zones are created using the threshold value set to design the DT as presented in Figure 5.

The sensitivity of the features used in forming a decision tree is analysed in a graphical form from Figures 8 to 11 for
different system variation. In these figures, the dotted straight lines indicate the threshold setting values undertaken for
this proposed approach.
7.1.1 | Case 1 features' response for non‐islanding events

On analyzing Figure 8, it can be observed that feature F4 having a threshold value of 2 p.u. is crossed by load switching
instance, while fault and capacitor switching instances remain within the range of less than 2 p.u. Thus, according to
(A)

(B)

(C)

FIGURE 9 Analysis of islanding events with active power load mismatch: A, variation in feature F4, B, variation in feature F1, and C,

variation in feature F2
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the designed DT, load switching instance is further analysed by feature F2 as shown in Figure 8C, whereas fault and
capacitor switching instances are forwarded towards feature F1 for classification and as presented in Figure 8B. On ana-
lyzing F1 and F2, all the instances are observed to be within the predefined threshold of ±2 and +12 p.u. respectively
and hence conclude to be non‐islanding instances.
7.1.2 | Case 2 features' response for islanding events: P variations

Figure 9 illustrates the active power load mismatch variations for feature F4, F1, and F2 during islanding. On studying
the variations, it is clear that from 15% to 80%, active power load mismatch events lie in a range greater than the set
value (ie, = 2 p.u.) and the rest of the lower active power mismatch events lie in the lower range of set value. So, the
(A)

(B)

(C)

FIGURE 10 Analysis of islanding events with reactive power load mismatch: A, variation in feature F4, B, variation in feature F1, and C,

variation in feature F2
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events with below 10% of active power load mismatch are examined by the F1 node of the DT and the rest by the F2
node of DT. It can be observed from Figure 9B that events with below 10% of active power mismatch do not satisfy
the threshold values set in DT for islanding detection and remains in the NDZ of DT. Whereas, the events examined
at node F2 cross the set threshold value (ie, 12 p.u.) and are easily detected as islanding event within 3 cycles as
observed from Figure 9C.
7.1.3 | Case 3 features' response for islanding events: Q variations

The behavioural changes of features F4, F1, and F2 are presented in Figure 10, while studying the instances of reactive
power mismatch during islanding. Figure 10A shows that all the instances between ±20% of reactive power load mis-
match do not cross the set threshold, thus are further examined by feature F1. On examining feature F1 in Figure 10
B, it can be concluded that a small range of ±5% of reactive power load mismatch goes undetected and remains in
the NDZ of DT. While other instances crossing the threshold of F4 are examined by feature F2 and on satisfying the
threshold of F2, all the instances are detected perfectly as islanding in 2.5 cycles as shown in Figure 10C.
7.1.4 | Case 4 features' response for islanding events: PQ variations

The system performance for active and reactive power load mismatch during islanding is shown in Figure 11. On ana-
lyzing the feature F4 variations, it can be observed that all the events cross the specific threshold of the feature and thus
are verified at node F2. Every instance of power imbalance satisfies the threshold setting defined within 2.5 cycles from
the occurrence of an islanding condition.
(A)

(B)

FIGURE 11 Analysis of islanding events with active and reactive power load mismatch: A, variation in feature F4 and B, variation in

feature F2
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Moreover, in Figure 7, the scatter plot of events implemented in DT also clearly illustrates that some instances of
islanding case lie within the non‐islanding zone, thus showing a presence of NDZ in proposed DT. To reduce the
NDZ to zero, the DT approach is followed by an active method. A detailed analysis on the introduced active method
is presented in the subsequent section.
7.2 | Performance response of active method

In active method, the selected dependability‐based feature is used for injection. The injected value is set less than 3% of
feature variations. The inception of disturbance injection occurs, if the DT fails to detect the event as islanding within its
5 cycles. As stated in Figure 4, the interruption is injected for a period of 5 cycles (ie, from 0.58 seconds to 0.66 seconds).
The effect of injecting parameter on feature F1 is further examined to discriminate the undetected instances into
islanding and non‐islanding events. The second threshold specified for feature F1 in active method is ±15 p.u.

For islanding instances, the injection enhances the deviation to cross the threshold limit, but for non‐islanding cases,
the injection does not deviate the feature such that it crosses the threshold limit and remains nondetected. As observed
before, some instances lie under the NDZ of DT. Verification of those instances with active method is shown in Figure 12.
Showcasing a particular active power mismatch, it is observed that after injection at 0.58 seconds, the islanding events
with smaller power mismatch are detected at 0.62 seconds as shown in Figure 12A. So for instances, which goes unde-
tected as islanding gets detected after injection within 7.5 cycles from the occurrence of islanding. Whereas Figure 12B
shows a non‐islanding case which lies between the threshold limit of ±15 p.u. and is detected as non‐islanding.
8 | DISCUSSION

Islanding protection is analysed by proposing offline and online mode of system operation. In offline mode, the pro-
posed MMODEA yields out a feature vector [F1, F2, F4] and [F9] for accuracy and dependability respectively as
(A)

(B)

FIGURE 12 Feature F1 response for active approach: A, islanding event and B, non‐islanding event



TABLE 8 Accuracy performance of active approach for smaller power mismatch

Power Mismatch During Islanding Scenarios Detection Accuracy

±10% to 0% active power variation 100%

±5% to 0% reactive power variation 100%

TABLE 9 Comparison of the proposed method with the existing methods

Ref. DG Type
Whether Feature
Selection Used?

No. of Features
Extracted

No. of Features
Considered for
Islanding Detection

Detection
Time (Cycles) Accuracy

El‐Arroudi et al27 MS No 11 11 ‐ 91.6%

Samantaray et al28 MS Yes (using DT) 11 3 ‐ 100%

Faqhruldin et al29 MI No 21 21 ‐ 95.0%

Faqhruldin et al30 MS and MI Yes (using forward
and backward
sequential FS)

21 4 11 100%

Kar and Samantaray31 MS and MI Yes (using DT) 27 11 2 97.5%

Proposed approach MS and MI Yes (using MMODEA) 16 3 7.5 100%

MS, multiple synchronous DG; MI, multiple inverter‐based DG; DT, decision tree.
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objective function. Implementing the selected features set in online mode, the proposed HIDM functions on sensing the
variations in the features. The passive detection method of HIDM is a DT classifier using feature F1, F2, and F4. In this
work, the overall detection accuracy of the proposed DT is calculated as 94.24%, which leaves behind a NDZ of 5.76% as
shown in Table 7. Islanding event is detected within 3 cycles by the DT classifier. DT is designed such that it gives faster
decision and completely avoids the malfunctioning of relay. It is clearly observed that the detection accuracy is found to
be 100% for the power mismatch (both active and reactive power) greater than ±20%. Moreover, it can be analysed that
the detection accuracy gradually reduces, and is found to be only 77.58% and 78.48% for smaller reactive and active
power mismatch (ie, 0% to ±10%) respectively. Therefore, this area of power mismatch (0% to ±10%) can be stated as
NDZ of the designed DT‐based passive approach. To eliminate this NDZ, the simulated cases are tested by the proposed
active method as mentioned in the section. Active method implemented using feature [F9] increases the sensitivity, and
deviations in the analysed feature reduce the NDZ to zero. The performance accuracy of active method is presented in
Table 8, showing a NDZ of 0%. It takes a run‐on time of 7.5 cycles (5 cycles for DT classification and +2.5 cycles after the
injection of disturbance) to detect the instances lying within NDZ of DT.

Furthermore, to justify the application of proposed FS algorithm, for islanding detection, a comparative analysis has
been done with respect to the number of features used as detecting parameters. Extracting a large number of features in
real‐time environment increases the computational burden, and hence, the selection of minimum number of most
appropriate features for detection becomes an important concern. Along with that, FS reduces the training time and
computational time of a classifier for classification and improves the classification accuracy by eliminating the redun-
dant features. Therefore, Table 9 describes the superiority of the proposed method in comparison with the other existing
approaches on the basis of type of DGs considered, application of FS, number of features extracted and studied, detec-
tion time taken, and accuracy.
9 | CONCLUSION

The proposed approach suggests 2 modes of operations implemented on modified IEEE 13‐bus test feeder with multiple
inverter‐based DGs. In offline mode of operation, to select the optimum feature set, a novel FS approach based on
MMODEA‐ELM is proposed. The objective functions are formulated based on accuracy, dependability, and number
of features to compute 2 optimum feature sets for better accuracy and dependability respectively. The proposed
approach is cross‐validated under various islanding and non‐islanding conditions, even under 20 and 30 dB noisy envi-
ronment. In online mode of operation, a HIDM is proposed comprising of a passive and an active detection method



CHANDAK ET AL. 21 of 22
using the selected feature vectors. A DT‐based passive method is designed by considering the obtained feature vector of
better accuracy to detect islanding events. To further reduce the small NDZ present under different power mismatch
conditions, an active method is triggered based on the obtained feature with better dependability for the non‐islanding
events detected from DT approach. For the cases under study, the suggested technique is capable of detecting islanding
events in less than 7.5 cycles with an accuracy of 100% justifying its real‐time application.
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