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Abstract 
 
Extreme Learning Machine (ELM) is widely known as an effective learning algorithm than the conventional learning methods from the 

point of learning speed as well as generalization. The hidden neurons are optional in neuron alike whereas the weights are the criteria 
required to study the linking among the output layer as well as hidden layers. On the other hand, the ensemble model to integrate every 
independent prediction of several ELMs to produce a final output. This particular approach was included in a Multi-Agent System 
(MAS). By hybrid those two approached, a novel extreme learning machine based multi-agent systems (ELM-MAS) for handling classi-
fication problems is presented in this paper. It contains two layers of ELMs, i.e., individual agent layer and parent agent layer. Several 
activation functions using benchmark datasets and real-world applications, i.e., satellite image, image segmentation, fault diagnosis in 
power generation (including circulating water systems as well as GAST governor) were used to test the ELM-MAS developed. Our ex-
perimental results suggest that ELM-MAS is capable of achieving good accuracy rates relative to others approaches.  

 
Keywords: Extreme Learning Machine; Power System Generation; Multi-Agent System. 

 

1. Introduction 

Lately, Extreme Learning Machine (ELM) is widely known as an 
effective learning algorithm than the conventional learning meth-

ods from the point of learning speed as well as generalization [1-
6]. ELM has the capability to make universal approximation with 
haphazard biases and input weights [7]. Otherwise speaking, the 
hidden neurons are optional in neuron identical whereas the 
weights are the criteria required to study the connection between 
the output layer and hidden layers.  
According to Huang et al. [8], the ELM is extremely effective and 
inclines to universal prime in contrast to the conventional 

feedforward neural network (FNN). Furthermore, ELM is able to 
achieve the greatest generalization bound of the conventional FNN, 
in which each parameter was learned with activation functions that 
were normally utilized [9]. In the context of generalization and 
efficiency, ELM performed much better than that of traditional 
FNN, as evidenced in diverse types of problems [1-6]. The ELM 
can also be applied to other fields, namely hyperspectral images 
[10], biomedical analysis [11-12], system modelling [13-14], 
chemical process [15], action recognition [16], power systems [17], 

and others.           
The focus of some research group was on ensemble model to inte-
grate every independent prediction of several ELMs to produce a 
final output [18-22]. This particular approach was included in a 
Multi-Agent System (MAS) as well [23]. In the past decade, Mul-
ti-Agent Systems (MASs) had been a focus of attention. It had 
been successfully applied by researchers for tackling problems in 
different domains, as shown by its extensive applications in deci-

sion support [24], military support [25], healthcare [26], control 

systems [27], e-Commerce [28], and knowledge management [29]. 
The MAS’s general structure was illustrated in Figure 4.1, in 

which the base platform was consisted of a collection of ELMs 
known as individual agents. Normally, an individual ELM (indi-
vidual agent)'s outcome was delivered to a parent agent, which 
was the decision combination module where the ultimate decision 
was made in this structure.     
In general, the average output in the decision combination module 
was derived from the methods including weighted average [7], 
exact average [20], voting [30], and confusion matrix [31]. Regret-

tably, in the decision combination module, these aforementioned 
approaches often needed additional algorithms to generate out-
come. In this paper, decision combination module based on ELM 
was proposed.      
Meta-learning can roughly be described in terms of at least a 
learners are learning information, where it is a common approach 
used to combine the outcomes of multiple learners [32-33]. The 
model is achieved by multiple ELMs as hidden neurons, while the 

meta-learner learns from the outputs of hidden neurons. Theoreti-
cal analysis and experimental results from several studies using 
artificial and benchmark regression datasets illustrated that Meta-
ELM, which is trained by multiple ELMs, could give good per-
formance with a lower computational cost [34]. Meta-ELM [34] is 
an ELM with a special design, i.e., used ELMs as hidden neurons. 
However, in this paper, an ELM-MAS (extreme learning machine 
based multi-agent systems) is designed from another perspective.  
It has two layers of full ELMs: the first layer made up of at least 

an ELMs and each ELM is considered as an individual agent; the 
second layer consists of a single ELM and it is the parent agent. 
This two layers structure of the proposed ELM-MAS resembles a 
typical multi-agent neural network (Fig. 1). 
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Fig. 1: Multi-agent Neural Network Scheme 

2. The Algorithms of ELM and ELM-MAS 

Depending on the type of activation function it utilizes, an ELM 
can be either a feedforward or a RBF network with a sophisticated 
learning algorithm (Fig. 2). Deliberate a series of N training sam-
ples (with a input vector and corresponding target output vector), 

),( jj tx , i.e. M
j Rx  (M is number of input attributes) and 

C
j Rt  (C is number of classes)  are used to train an ELM that 

consists of L number of hidden neurons. Five ELMs are generated 
as individual agents in this paper, with each having different ran-

dom input weights. As shown in Fig. 3, the output of each ELMk 

(for k = 1, 2, ..., 5), in response to jx is 
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Fig. 3: Architecture of ELM-MAS with Several Individual Agents and a 

Parent Agent. 

 
The procedure of the training phase is as follows. 

Step 1: Haphazardly designate the input weights 
k
ia  and 

k
ib  for  

i = 1,… L and k = 1, 2, ...5 
Step 2: Calculation of the hidden layer output matrix for ELMk 
(for k = 1, 2, ...5),  Hk, as follows. 
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Step 3: Computation of the output weights of ELMk, k
β . Due to 

the reason that H is possibly a non-symmetrical matrix, the in-
verse matrix cannot be solved. As results, a Moore-Penrose pseu-
do inverse matrix method was adopted to circumvent this problem, 
which was demonstrated by the equation below, 
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where 
T

N ],...,[ 1 ttT  is the corresponding targeted output vec-

tors. 

Step 4: After the calculation of ELMk's output weights, the out-
puts of ELMk were computed using the training samples. 
 





L

i
j

k
i

k
i

k
icj

kk bG

1

),,()(ELM xaxy  for j = 1, …, N , c = 1, …, C (6) 

 

 

Step 5: The input weights for parent ELM, i.e., ip  and iq for i = 

1,… L1, where L1 is the number of hidden neuron of parent ELM 
are assigned at random. 
Step 6: The hidden layer output matrix for parent ELM, S, is 

computed as below 
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where wj is the combination outputs of ELMk  (for k = 1, 2,...5) in 

response to xj , i.e., ][ 54321
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5
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Step 7: Used the output of ELMk to calculate the output weights 
of parent ELM, α by the equation below, 
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Once the training of all samples were completed following Step 1 

to Step 7, prediction of unknown input vector z based on the k
a , 

k
b  , p  , q , 

k
β andα  can be done using the ELM-MAS i.e.,  
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where hk and yk are hidden layer output and of ELMk respectively,  

][ 54321
yyyyyv   is combination outputs of the ELMk in 

response to z, s and y  are hidden layer of final output of the pre-

diction respectively.  
Besides equations (2) and (3), there are several activation func-
tions that have been used in this paper, i.e.,  
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Equations (13), (14), and (15) are the Gaussian activation function, 
Laplacian activation function and Laplacian Basis function.  
The proposed ELM-MAS and the Meta-ELM [34] have a similar 
structure. However, they have subtle distinctions in structural 
representation, and also differences in the way they handle train-
ing datasets. Firstly, Meta-ELM partitions the entire training data-
set into several random subsets and each ELM (hidden neurons) 
learns a subset. However, all ELMk (individual agent) of the pro-

posed ELM-MAS trained by the same entire training dataset. Sec-
ondly, ELMs in Meta-ELM are considered as hidden neurons. But 
for ELM-MAS, ELMk are considered as individual agents. Lastly, 
the Meta-ELM is a three layers neural network, but ELMk and 
parent ELM of ELM-MAS have a full three layers neural network 
structure hence total of six layers. As a conclusion, the structure of 
Meta-ELM is the same as a standard ELM (as shown in Fig. 2) but 
with ELM in the hidden neuron. This is different from the pro-

posed ELM-MAS with two layers of ELMs (six layers of neurons) 
which formed a multi-agent system. 

3. Experimental and Results using Benchmark 

Data 

In this paper, there are two benchmark datasets (e.g. Satellite Im-
age and Image Segmentation) which were used to exam the en-
actment of ELM-MAS. The datasets’ specifications were detailed 
in Table I [35]. All experiments were run on MATLAB (ver.2010) 
using a private computer equipped with Intel(R) Core(TM) i7 2.9 
GHz CPU and 8 G RAM. 

Table I: Specification of Benchmark Datasets [35] 

Dataset # Attrib-

utes 

# Clas-

ses 

# Train-

ing 

# Test-

ing 

Satellite Image 36 6 4,435 2,000 

Image Segmenta-

tion 
19 7 1,500 810 

In the experiment, we referred to the suggestion of Liang [35] to 
fix the number of hidden neuron of each ELMk (i.e., L) to 400 for 
Satellite Image and 180 for Image Segmentation. On the other 
hand, 2/3 of the training samples were utilized for training while 
1/3 were used to decide the optimum amount of neurons of the 
parent ELM (i.e., L1) via a validation process. For each type of the 
activation function of ELM-MAS, training and validation process-
es start by setting L1 = 50 units and then increased by an increment 

of 50 units. As an example, Table II shows the training and valida-
tion processes based on sigmoid activation function. From the 
Table II, the number of hidden neurons with the most excellent 
validation result is chosen for ELM-MAS's performance evalua-
tion. 
In the Table II, the snowballing amount of hidden neuron is not 
enriched the accuracy rate. This was due to a condition termed 
overfitting, where the neural networks overestimate the targeted 

problem’s complexity. In contrast, it also significantly reduced 
generalization capability, which resulted insubstantial variation in 
predictions. Hence, using feedforward neural network to allocate 
the proper number of hidden neurons with the intention to avoid 
overfitting was of the utmost importance in function approxima-
tion. 
 

Table II: Validation Accuracy Rates of Sigmoid Activation Function 

L1 

Satellite Image Image Segmentation 

Validation 

Accuracy 

(%) 

Time (s) 

Validation 

Accuracy 

(%) 

Time (s) 

50 89.35 2.38 94.52 0.29 

100 89.53 2.40 94.20 0.31 

150 89.45 2.39 94.21 0.33 

200 89.50 2.43 93.77 0.37 

250 89.40 2.52 93.50 0.38 

Table III outlined the results by means of ELM-MAS in the con-
text of the training time (seconds), test accuracy, as well as the 
number of hidden neurons for all activation functions. 

Table III: Test Accuracy Rates of the ELM-MAS with Different Activa-

tion Functions 

Activa-

tion 

Function 

Satellite Image Image Segmentation 

Test 

Accura-

cy (%) 

Tim

e (s) 

# Hid-

den 

Neu-

rons 

Test 

Accura-

cy (%) 

Tim

e (s) 

# Hid-

den 

Neu-

rons 

RBF 88.71 7.51 150 94.70 0.56 100 

Sigmoid 89.27 2.53 200 94.48 0.30 50 

Gaussian 89.47 2.97 400 94.62 0.36 100 

Laplace 

Act. 
89.96 2.40 150 94.87 0.38 200 

Laplace 

Basis 
89.86 7.32 100 95.39 0.90 250 

 

Table IV: Comparison with Other ELM networks 

Acti-

vation 

Func-

tion 

Algorithm 

Satellite Image Image Segmentation 

Test 

Ac-

cura-

cy 

(%) 

Tim

e (s) 

# 

Hid-

den 

Neu-

rons 

Test 

Ac-

cura-

cy 

(%) 

Ti

me 

(s) 

# 

Hid-

den 

Neu-

rons 

RBF 

ELM [35] 89.01 
319.

14 
400 94.53 

12.

20 
180 

ELM-MAS 88.71 7.51 150 94.70 
0.5

6 
100 

Ensemble-

ELM [20] 
89.28 

343.

85 
400 91.23 

72.

08 
180 

Sig-

moid 

ELM [35] 88.93 
302.

48 
400 94.88 

10.

00 
180 

ELM-MAS 89.27 2.53 200 94.48 
0.3

0 
50 

Ensemble-

ELM [20] 
89.01 

1591

.76 
400 94.79 

74.

17 
180 
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Comparison was also made between the proposed ELM-MAS and 
other variants of ELMs, such as ELM [35] and ensemble ELM 
[20]. Based on Table IV, the test accuracy rates of ELM-MAS 
were comparable (if not greater) with ELM (RBF) and ELM 
(Sigmoid). In term of processing times, the comparisons between 
ELM and ELM-MAS was inconclusive because of improvement 
of computer hardware in past several years. In general, the pro-
cessing time of ELM-MAS is considerably fast (within few se-

conds). In addition, it can be faster if training of all ELMk were 
conducted in parallel.  

4. Application in Power Generation 

Application of the developed ELM-MAS on power generation 
system is discussed in the following section.  

4.1. Circulation Water Systems (CWS) 

 
Fig. 4: Circulating Water Systems 

 
Fig. 4 demonstrated the Circulating Water System (CWS) in a 
power generation plant of Tenaga Nasional Berhad (TNB) located 
at Penang, Malaysia [36-37]. As shown, the system comprised of 
turbine condensers, drum strainer, and piping between the sea 
water’s inlet and the drain, where water will be sent back into the 
sea. Turbine condenser is the major component in the CWS which  
simultaneously function in the removal of heat from low pressure 
steam as well as the maintenance of the turbine backpressure at 

the bottom potential nevertheless constant level. 
Undeniably, the heat transfer’s efficiency in a condenser had a 
major impact on the condenser vacuum. Maintenance of the tur 
bine backpressure at a low level via an effective heat transfer pro-
cess allowed the turbine to work at high efficiency for power gen-
eration. Nonetheless, in the case of excessive amount of gases due 
to cooling presented in the condenser, the vacuum level would be 
affected and the heat transfer efficiency in the condenser would be 

reduced. Additionally, hygiene of the condenser tubes had sub-
stantial effect on the capability of the condenser to transfer heat 
from the exhaust steam to the cooling water. Accumulation of 
mud plus fine solid materials like sand, shells and seaweed in the 
water which slipped away during the filtering process of the circu-
lating water system will be resulted in blockage, which ultimately 
led to inefficient heat transfer in the condenser tubes.  
A series of 2500 datasets were gathered and segregated into train-

ing, validation, and testing sets (Table V) [38]. Before the tests, 
the ELM-MAS model was trained and validated to attest the most 
appropriate number of hidden neurons. As shown in Table VI, 
training ELM-MAS with a Laplacian activation function at 
96.96% attained the highest test accuracy. The test accuracy rate 
of ELM-MAS is comparable (if not superior) to other approaches 
including FAM [39] and SVM [40] (Table VII). 

Table V: Description of Dataset in the CWS [38] 

 
 

Table VI: Experimental Results for Different Activation Functions in 

CWS 

 

 
Table VII: Comparison with Different Approaches of CWS Dataset 

 

4.2. GAST Governor 

No more Modern power plants could generate and supply high 
quality electricity to customers. Many computers had been in-
stalled with simulation programs to analyze the characteristics of 
power systems in the planning phase as well as the actual opera-
tions which included monitoring and control activities. System 
analysis software was executed repeatedly in the planning stage of 
a power plant [41]. Modification and adjustment of the input data 

into the software were made based on the engineers’ experiences 
and heuristic knowledge till satisfactory plans had been deter-
mined. Currently the development of the programs in the power 
plant analysis as well as planning are according to the mathemati-
cal models besides only implemented for the numerical computa-
tion. Thus, development of techniques and methodologies for 
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incorporating practical knowledge of planning were used in so-
phisticated approaches and were applied into the system planning 
[41].    
Computer based in Energy Management Systems were frequently 
introduced into gas turbine monitoring and control. Besides that, 
these computer-based systems were commonly utilized in energy 
control center. Gas Turbine analysis software as well as other 
application software was being introduced into the Energy Man-

agement Systems with intentions of examining as well as forecast-
ing the behaviour of gas turbines during steady-state operations 
[41]. Although these software was a powerful tool, its abilities in 
assisting the operation engineers in making the best decisions 
were very limited during the time when unplanned or unexpected 
modes of two operations were detected. Most of the abnormal 
modes in the system operation were triggered by either reactive or 
active power imbalances, network faults or frequency deviations. 

A partial or complete systems blackout can be happened in an 
unplanned operation [41]. Thus, experienced operation engineers 
will be making the decisions under these emergency situations for 
restoration of the gas turbine into normal state. There is a need to 
incorporate the knowledge of the experienced operation engineers 
with conventional application software into a situation such as 
operational strategies for network restoration, efficiency in diag-
nosis of network faults, and balancing reactive and active power 

[41]. Therefore, the development of fast and efficient methods of 
predicting abnormal system behaviour is required.     
In recent years, Malaysia had experienced several large-scale 
blackout incidents [42]. In the latest incident occurred in 2005, 
several gas turbine plants sequentially set off inadvertently follow-
ing a frequency drop of about 1.5 Hz, which caused a total genera-

tion loss of 5760 MW. Following this, several studies were per-
formed to observe responses of combined cycle power plants in 
relation to frequency drops [42-45]. These models were based on 
gas turbine models developed by Rowen [46] and Mello et al. [47] 
to simulate practical plants, which are then utilized to compute 
responses to frequency changes. Nevertheless, comprehensive 
analysis on behavior of plant variables during frequency drops has 
not been done. 

The major priority for most power generation companies is to 
attain maximum availability of the gas turbine. To attain maxi-
mum availability, the company must prevent accidental shutdowns 
and if accidental shutdown does occur, the recovering time must 
be minimized. Consistent monitoring of the gas turbine condition 
is the best method to achieve maximum availability so that minor 
problems can be detected before they evolve into major problems. 
In this case it is believed that an Artificial Intelligent gas turbine 

condition monitoring system can be used to determine the condi-
tion of gas turbine parameters during contingencies to minimize 
trouble shooting time and restore the gas turbine to its normal 
operating condition. 
The GAST denotes the key dynamic features of industrial gas 
turbines driving generators linked to electric power systems. 
Speed differences from nominal were envisioned designate minute 
(roughly 5%). Figure 5 illustrated the model, which comprised of 

a forward path with governor time constant, T1, as well as a com-
bustion chamber’s time constant, T2, in addition to a load-limiting 
feedback path. The load limit was susceptible to turbine exhaust 
temperature, whereby T3 indicated the time constant of the exhaust 
gas measuring system. The constant, KT, was utilized for adjusting 
the gain of the load-limited (AT) feedback path. 

Fig. 5: Governor Model, GAST. 

 
The training data is assembled on the output of the GAST block, 
which is the mechanical power, Pmech for a normal operating gas 
turbine [48]. A total of 630 data were gathered for all 7 input at-
tributes in the GAST with variation within their operating range 
values [49] (Table VIII). As shown in Table IX, the data were pre-
allocated into training, validation, as well as test sets.         

 
Table VIII: Details of the 7 Attributes in GAST 

 

Table IX: The Pre-allocated with their respective indications of the GAST 

dataset. 

 
 
Table X displayed the experimental results for utilizing ELM-
MAS in the context of the test accuracy, training time (seconds), 
as well as the number of hidden neurons for every activation func-
tion in GAST. Laplace Basis activation function attained the 
greatest test accuracy rate of 76.79%. 



352 International Journal of Engineering & Technology 

 
Table X: Experimental Results for Different Activation Function in GAST 

 

5. Conclusion  

In this study, a novel ELM-MAS model with two layers of ELMs 
is established. The established model was validated by utilizing 
benchmark datasets such as satellite image and image segmenta-
tion. According to the results, the test accuracy rates of ELM-
MAS were comparable (if not superior) to ELM (RBF) and ELM 

(Sigmoid). Furthermore, the developed model was evaluated by 
applying it on the power generation system including circulating 
water systems as well as governor (GAST). Thus far, our results 
demonstrated that the test accuracy rates of ELM-MAS for circu-
lating water systems was comparable (if not superior) to other 
algorithms.        
Although results obtained from the benchmark studies (using sat-
ellite image and image segmentation datasets) as well as applica-

tions in power generation (circulating water systems and governor, 
GAST) were reassuring, further research with datasets from di-
verse application fields were essential for validating the suitability 
of ELM-MAS application in actual world. 
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