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Abstract: Climate change is one of the most effectual variables on the dam operations and reservoir
water system. This is due to the fact that climate change has a direct effect on the rainfall–runoff

process that is influencing the water inflow to the reservoir. This study examines future trends in
climate change in terms of temperature and precipitation as an important predictor to minimize the
gap between water supply and demand. In this study, temperature and precipitation were predicted
for the period between 2046 and 2065, in the context of climate change, based on the A1B scenario
and the HAD-CM3 model. Runoff volume was then predicted with the IHACRES model. A new,
nature-inspired optimization algorithm, named the shark algorithm, was examined. Climate change
model results were utilized by the shark algorithm to generate an optimal operation rule for dam
and reservoir water systems to minimize the gap between water supply and demand for irrigation
purposes. The proposed model was applied for the Aydoughmoush Dam in Iran. Results showed
that, due to the decrease in water runoff to the reservoir and the increase in irrigation demand, serious
irrigation deficits could occur downstream of the Aydoughmoush Dam.

Keywords: water resource management; shark algorithm; IHACRES model; reservoir operation

1. Introduction

Water and energy shortage are essential issues for future society. Decision-makers should suggest
changes in the amounts of resources needed based on the demand of a given society [1]. Climate
change affects the management of water resources in a way, causing flood or draught which is resulting
in severe issues to the environment. Thus, it is necessary to consider climate change for water resource
management [2–5]. Kling et al. [6] simulated runoff in the upper Danube basin and used nonlinear
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programming to manage the environmental demands in a future period (2011–2030). The results
indicated that the volumetric reliability index in the forthcoming period decreased significantly
because the total precipitation in future periods considerably reduced; therefore, less inflow to the
reservoir occurred.

1.1. Background

One of the critical issues in water resource management is reservoir operation, which requires that
both downstream demands are met and that reservoir storage is adequate for critical periods [7–11].
The challenges of a reservoir operation could be solved by an optimization framework. Different
methods exist for solving reservoir operation issues in water resources management [12,13]. Traditional
methods, such as nonlinear programming, linear programming, and dynamic programming, have
been used in previous studies [14–16].

Recently, new methods, such as evolutionary algorithms and metaheuristic algorithms, have been
used for reservoir operation [17]. Reddy [18] used a genetic algorithm for reservoir operation in India.
The aim of the study was to meet downstream irrigation demands, and the results showed that the
genetic algorithm did effectively satisfy these demands better than dynamic programming methods.
Afshar et al. [19] used the honey bee mating optimization method for reservoir operation, and the
results showed that the method converged faster than the genetic algorithm. Bozorg-Hadad et al. [20]
also used the honey bee mating optimization algorithm for multi-reservoir operations, and the results
showed that the average solution of the method was close to the global solution of the problem.
Chang and Cheng [21] used the genetic algorithm for a multi-reservoir system with multiple purposes.
Results showed that the genetic algorithm yielded a higher reliability index and adequately satisfied
different demands. Fallah-Mehdipour et al. [22] used genetic programming and a genetic algorithm
to determine a water release policy. Results showed that the genetic programming method met all
requirements, with low vulnerability among different demands.

The bat algorithm, one of the more common methods, was also utilized by Bozorg-Hadad et al. [23] for
power plant operation. Results showed that the bat algorithm was superior to other metaheuristic
algorithms in finding optimal solutions for more power generation. Thus, different studies have
shown that various evolutionary algorithms displayed high performance in solving complex problems.
However, these studies did not consider the crucial effects of climate change or reservoir operations,
and few studies have found the impact of climate change on reservoir operations. Ashofteh et al. [24]
optimized the performance of an irrigation system based on genetic programming in the context
of climate change. The period of 1987–2000 for Aidoghmoush dam in East Azerbaijan, Iran was
considered the base period for their study, and the period 2026–2039 was considered the future
period. Results indicated that the runoff volume and reservoir inflow decreased in the forthcoming
period and that future demand also increased. Thus, a notable deficit was observed in the future
period. Jahandideh-Tehrani et al. [25] optimized multi-reservoir operations of the Karoon Reservoir
System to increase power generation in base and future periods, with the results indicating that the
release of water in the future period (2011–2030) decreased because inflow to the reservoir decreased.
Additionally, power generation in the future period was less than that of the base period (1971–1990),
and the released water was considered a decision variable. Ahmadi et al. [26] extracted the trends
from a base period and future period to increase power generation at a power plant of Karoon-4
reservoir in Iran. Results indicated that the vulnerability index of the coming period increased while
the reliability index decreased based on a multiobjective genetic algorithm. Moreover, inflow to the
reservoir significantly decreased due to lower runoff volume, and subsequently, power generation in
the future period experienced considerable issues. Tzabiras et al. [27] used a particle swarm algorithm
to provide an optimal solution for decreasing the deficit of an irrigation system in base and future
periods on Lake Karla Watershed. Released water was considered a decision variable, and the results
indicated that the vulnerability index increased compared to that in the base period due to increased
demand in the future period. Yang et al. [28] optimized a multipurpose system based on a genetic
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algorithm in base and future periods to manage irrigation and environmental demands. Results
indicated that the extracted trends in the future period (2011–2030), based on the genetic algorithm,
could not meet needs because the drought index increased and precipitation significantly decreased.
Ehteram et al. [29] optimized an irrigation system based on a bat algorithm in base and future periods.
Results reflected the uncertainty of climate change, and the random parameters in the bat algorithm
were important factors that influenced reservoir operation and reservoir storage in the future period
(2011–2030). They noted that these factors should be optimized to effectively meet irrigation demand.

Ehteram et al. [30] proposed the shark algorithm to evaluate its performance in solving the real-life,
complex problems of optimizing operations of the single reservoir and hypothetical multi-reservoir
case studies. The hydrological features and characteristics of the selected case studies were relatively
simple and, more specifically, the reservoir’s inflow pattern was almost deterministic, which was
considered as one of the major influential parameters in the dam and reservoir operations. Furthermore,
a complete lack of an associated series of penalty functions against violations of the operation was
assumed in Ehteram et al. [30]. On the other hand, the proposed shark algorithm examined in the
current, selected case study, displayed highly nonlinear characteristics in the reservoir system, and a
highly stochastic nature in the reservoir’s inflow pattern. Besides, the proposed shark algorithm will
be examined, considering three different levels of penalties during the generation of the operation
rule. It is regarded as a further challenge for the shark algorithm to adapt these penalty functions
and successfully generate optimal operation rules. In this context, this research could be viewed as a
further examination of the shark algorithm in creating an optimal operation release policy for dams
and reservoirs under different levels of complexity.

1.2. Objective

In this study, climate change and reservoir operation were considered. First, the climate of the
Aidoghmoush region of Iran was simulated. Maximum and minimum temperatures and precipitation
amounts were simulated based on the Long Ashton Research Station Weather Generator (LARS-WG5)
model, which can effectively simulate climate change. Notably, Khajeh et al. [31] investigated the effect
of climate change for the period 2011–2040 using this model. Results indicated a reduction in the
normal water level in the reservoir. Additionally, LARS-WG5 was used to simulate precipitation for the
period 2040–2070 [32]. In the current study, LARS-WG5 was used for climate change predictions, and
the volume of runoff was calculated using IHACRES software based on simulated temperature and
precipitation. Runoff volume was considered as the inflow to the reservoir, and reservoir operation was
simulated with the objective of minimizing the irrigation deficit. The shark metaheuristic algorithm is
proposed for reservoir operation, and the decision variable was the water release rate. There was a
need to identify the reservoir’s future inflow pattern in order to generate the operation rule for the
dam and reservoir water system. In fact, the available parameter for downscaling of the LARS-WG
was ‘rainfall’, which could be used to estimate or predict reservoir inflow. Hence, the procedure
carried out in this study downscaled precipitation, so that reservoir inflow could be generated using
the rainfall-runoff model ‘IHACRES’.

2. Methods

2.1. Shark Algorithm

The shark algorithm is based on olfactory sensors, which can identify the location of prey based on
received concentrations of odors. If a fish has been injured and bleeds in the water, the olfactory sensors
in sharks can find the position of the fish, as prey, based on the received odor. Thus, the following
assumptions are considered in the shark algorithm [33]:
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1- Fish, as the prey of sharks, have been injured, and their bodies distribute blood. Thus, the wounded
fish have a low velocity in the water.

2- Blood is regularly distributed in the water, and the odor particles that are closer to the fish allow
the sharks to find the injured fish sooner.

3- There is a blood resource for each shark that each shark should find.

Figure 1 shows the flowchart of the shark algorithm. First, an initial population of SSO (simplified
swam optimization) is considered, and their positions are given as

[
Xl

1, Xl
2, . . . , Xl

NP

]
, Where each X is

considered a solution candidate. Additionally, each solution candidate has some decision variables,
such as Xl

i =
[
x1

i1, x1
i2, . . . , x1

iND

]
, Where x1

i,j is associated with the jth decision variable. Then, the velocity

of each shark is defined based on
[
V1

1 , V1
2 , . . . , V1

NP

]
, and each velocity encompasses some decision

variables, such as Vi
1 =

[
v1

i,1, v1
i,2, . . . , v1

i,ND

]
. The shark finds prey based on the intensity of the received

odors. Thus, if a shark gets a high-intensity odor, it moves at a higher velocity. Thus, the velocity can
be defined based on the changes in the objective function and the intensity of the received odor [33].

Vk
i = ηk·R1·∇(OF)

∣∣∣
Xk

i
(1)

where OF is the objective function, ηk is a coefficient in the range of [0, 1], R1 is a random value, and k
is the number of movements a shark makes toward prey.
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The velocity of a shark can be formulated based on the equation

vk
i, j = ηk·R1·

∂(OF)
∂x j

|xk
i, j (2)

The inertia of a shark has a limit, and thus, the limit inertia is used for the velocity in Equation (3)

vk
i, j = ηkR1

∂F
∂x
|xk

i, j
+ αk·R2·vk−1

i, j (3)

where αk is the limit inertia and R2 is a random coefficient in the range of [0, 1]. The added inertial
term causes the velocity at the current time to be dependent on that at the previous time. Additionally,
the speed of a shark has a limit. Specifically, the maximum velocity of a shark is 80 km/h, and the
minimum velocity is 20 km/h. Additionally, a limiting coefficient of velocity is used. This coefficient is
based on a ratio of 80/20 and is added to the previous equation as β

∣∣∣∣vk
i, j

∣∣∣∣ = min


∣∣∣∣∣∣ηk·R1·

∂(OF)
∂x j

∣∣∣∣∣∣
xk

i, j

+ αk·R2vk−1
i, j |,

∣∣∣∣βk·vk−1
i, j

∣∣∣∣
 (4)

where βk is the limit velocity.
The position of a shark in each level is updated based on the equation

Yk+1
i = Xk

i + Vk
i ∆tk (5)

where Yk+1
i is the location of a shark at the new level and Xk

i is the position of a shark at the previous level.
Additionally, a rotational movement is considered a local search in the shark algorithm (Figure 2).

A rotational movement in the shark algorithm is a closed contour that should not be circular but can be
a curve. Based on rotational movement, the shark searches the probable best location as a contour so
that it can avoid local optimums based on more searches. This process provides accurate searches that
allow the shark to obtain a global solution

Zk+1,m
i = Yk+1

i + R3Yk+1
i , m = 1, . . . , M (6)

where Zk+1,m
i is the position of the shark after a local search, m is the number of points included in a

local search, M is the number of points that a shark considers in a local search, and R3 is a random value
between −1 and 1. If a maximization problem is considered, Equation (7) reflects the best solution for
all sharks.

Xk+1
i = arg(max){OF

(
Yk+1

i

)
, OF

(
Zk+1

i

)
, . . . , OF

(
Zk+1,m

i

)
} (7)
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2.2. LARS-WG Model

Different methods are used for the generation of climate change scenarios. In this study, general
circulation models were used to simulate climate change. These models are three-dimensional and
based on physical and mathematical relations. First, tributary models were simulated; then, all the
tributary models of oceans and atmosphere were combined. One of the weaknesses of these models is
related to the large scale of computational cells in the temporal and spatial domains. Thus, the associated
variables did not have sufficient accuracy for simulating climate change. Different methods, such as
the LARS-WG model, were used to downscale computational cells. Additionally, emission scenario
A1B and the HAD-CM3 model were selected to simulate climate change. The A1B scenario considered
rapid future economic and population growth. Specifically, maximum population growth occurs in
the current half-century, and the population increase will then decelerate. Additionally, technological
advancements will rapidly occur in the future period. A previous study of climate change in the
Aidoghmoush basin showed that the A1B scenario and HAD-CM3 model exhibited good performance
compared to other models and scenarios. Ashofteh et al. [34] investigated the uncertainty of different
climate models and computed the weights of the different climate change models and scenario models
presented. They found that the HAD-CM3 model and A1B scenario had the highest weights and
lowest uncertainty for computations of temperature and precipitation. Additionally, other previous
studies in the basin found that the HAD-CM3 model and A1B scenario yielded the best results among
various models and scenarios [24,34].

Two significant steps should be carried out to set up the LARS-WG model considering future
periods with downscaling of the GCM data. The first step is to create a data file that defines the
estimated behavior of the historical climatic parameters during particular previous periods (*.wg).
The second step is to adapt to the selected climate change scenario (*.sta). To complete this step, the three
different climate parameters—precipitation, temperature, and radiation—should be computed utilizing
Atmosphere-Ocean General Circulation Model (AOGCM) and considering the following features:

- Once all of the above parameter data files have been completed using (*.sce), all the required data
are ready to use the LARS-WG model;

- The average monthly rate of changes of wet and dry events;
- Rate of change of the average monthly precipitation considering the long-term period;
- Rate of change of the daily temperature (fluctuations) considering the long-term period;
- The absolute difference of maximum and minimum monthly average temperature;
- Absolute change of the monthly average radiation (long-term).

The LARS-WG model can be used to produce daily values of maximum and minimum temperature,
precipitation, and radiation, or the number of sunny hours. The first version of this model was used to
evaluate agricultural risk [35]. The Markov chain is used for modelling precipitation in the LARS-WG
model. LARS-WG uses complex statistical distributions to predict meteorological variables. Specifically,
the LARS-WG model receives climate data from the climate model (HAD-CM3); then, the specific
scenario for each network in the HAD-CM3 model is considered. A model run requires information
from the previous, or base period. This climate change information for the basin and the input from
the HAD-CM3 model are subsequently used to simulate climate change conditions for future periods.
Thus, the LARS-WG model is considered a black box model [36–38].

Main variables in these models are the numbers of wet and dry days and daily precipitation;
associated distances are divided equally in the empirical distributions. Radiation in this model is
simulated independently from temperature. The amount of precipitation in the current month is
based on the semi-empirical distribution in the current month, which is independent of the wetness
series, or the amount of precipitation from the previous day. A Fourier series is used for temperature
prediction. Maximum and minimum temperatures are simulated based on a random process with
average and daily deviations that are dependent on the given conditions, such as dry or wet conditions.
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Generation of data is based on three steps. (1) First, the data from a general circulation model,
such as HAD-CM3, are extracted; then, a scenario for each network in the HAD-CM3 model is
defined. (2) Performance of LARS-WG is evaluated based on the condition of climate change in a base
period or past periods. (3) The model is used to predict climate change conditions for future periods.
Additionally, the following indices are used to assess model accuracy in the prediction of maximum
and minimum temperatures and precipitation:

R2 =

[∑n
i=1

(
Xi −

−

X
)(

Yi −
−

Y
)]2

∑n
i=1

(
Xi −

−

X
)∑n

i=1

(
Yi −

−

Y
)2 (8)

RMSE =

√∑n
i=1(Xi −Yi)

2

n
(9)

MBE =

∑n
i=1(Xi −Yi)

n
(10)

where R2 is the coefficient of determination, RMSE is the root mean square error, MBE is the mean
absolute error, X is the simulated value, Y is the observed value, X and Y. The mean value for simulated
and observed and n is the number of values.

2.3. IHACRES Model

The IHACRES runoff-precipitation model is a conceptual and lumped model. Previous studies
have shown that the IHACRES model requires fewer inputs and is mathematically more straightforward
than other hydrological models [24,34]. Additionally, an investigation of the uncertainty associated
with runoff simulation based on different hydrological models showed that the uncertainty of the
IHACRES model is comparable to that of other hydrological models [24,29,39].

This model is based on a nonlinear loss module and a linear unit hydrograph. First, the temperature
(tk) and precipitation (rk), which are based on the nonlinear loss module, are converted to effective
rainfall. Subsequently, rainfall is converted to surface runoff based on the linear unit hydrograph
module. The equation used in the nonlinear module is based on the following equations:

uk = sk × rk (11)

sk = C× rk +

[
1 +

1
τw(tk)

]
sk−1 (12)

τw(tk) = τwe0.062(R−tk) (13)

xk = aqxk−1 + bquk−1 + asxk−1 + bsuk−1 (14)

where sk is the wet index for the basin, τw(tk) is the control parameter of the sk value when precipitation
does not occur, R is the reference temperature, C is a parameter related to runoff and effective rainfall,
and xk is a runoff.

The parameters τw, C, a, and b are computed based on the calibrated and observed data.

3. Case Study

The Aidoughmoush Dam is located in the city of Mianeh, Azerbaijan Province, Iran. As shown
in Figure 3, the dam was constructed on the Aidoughmoush River in the Caspian catchment. The
primary purpose of the dam is to supply irrigation water for the region, of which 15 × 103 ha is
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cultivated land. The maximum and minimum storage volumes for this dam are 145.7 × 106 m3 and
8.9 × 106 m3, respectively.Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 20 
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Figure 3. Location of the Aydougmoush Dam.

The objective function involves minimizing the irrigation deficit

Minimize(OF) =
T
∑2∑

t=1

(Dt −Rt

Dmax

)
(15)

where D is the demand, R is the quantity of released water, and Dmax is the maximum demand.
The continuity equation for this reservoir is based on the equation

St+1 = St + It − losst −Rt − Spt (16)

where St+1 is the storage at time t + 1; It is the inflow to the reservoir; losst represents the total losses,
such as evaporation, and Spt is the dam overflow.

The loss is computed based on the equation

Losst = At × EVt (17)

where At is the area of the reservoir and EV is the value of evaporation.
Additionally, the value of dam overflow is computed based on the equation

Spt =

[
0← i f (St) ≤ Smax

St(St)maxmax

]
(18)

In addition, the following constraints should be considered for the stored and released quantities
of water.

0 ≤ Rt ≤ Dt Stmaxmin (19)

Furthermore, if the constraints are not satisfied, penalty functions should be added to the objective
function as follows:

P1,t =


0← i f (St+1 > Smin)

(Smin − St+1)
2

Smax
← otherwise

 (20)

P2,t =


0← i f (St+1) < Smax

(St+1 − Smax)
2

Smax
← otherwise

 (21)
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P3,t =


0← i f (Rt) < Dt

(Rt −Dt)
2

Dmax
← otherwise

 (22)

The following steps are used for reservoir optimization:
Step 1: First, scenario A1B and the HAD-CM3 model are used to simulate climate change based

on the LARS-WG5 model.
Step 2: The model is evaluated based on the predicted maximum and minimum temperatures

and precipitation for the base period (1980–1999).
Step 3: Then, the climate change model is used to calculate the temperatures and precipitation in

the future period.
Step 4: Next, the IHACRES model uses the computed temperatures and precipitation from Steps

2 and 3 to estimate runoff.
Step 5: The computed runoff from the previous step is used as inflow into the reservoir, and

reservoir operation based on the shark algorithm begins.
Step 5: Additionally, the following indices are considered to evaluate the water supply for the

base and future periods based on the shark algorithm.

• Reliability index

The reliability index reflects the ratio of water demand to the quantity of released water for one
operation period [29,39].

αV =

T∑
t=1

Rt

T∑
t=1

Dt

× 100 (23)

• Vulnerability index

The vulnerability index reflects the maximum probability of failure in an operation period [29,39]:

λ = MaxT
t=1

(Dt −Rt

Dt

)
(24)

where λ is the vulnerability index.

• Resiliency index

The resiliency index reflects the ability of a system to avoid failure [29]:

γi =
fsi

Fi
(25)

where γi is the resiliency index, fsi is the number of failure series in the operation period, and Fi is the
number of the failure periods.

4. Results and Discussion

Figure 4 shows a comparison of the simulated maximum and minimum temperatures versus the
observed data. Temperatures are average values for the period 2046 to 2065. Notably, the observed and
simulated data coincide, and Table 1 shows a statistical analysis of the simulated temperatures. Different
indices in Table 1 reflect the high accuracy of the climate change model in simulating temperatures.
Figure 5 shows the simulated temperatures for the future period (2046–2065). Temperatures for the
coming period were compared to those for the base period (1980–1999). The average minimum
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temperature in the winter season increased by 33% compared to that in the base period. Additionally,
the average minimum temperature in the spring season increased by 20% compared to that in the
same season in the base period. Moreover, the average minimum temperatures in summer and
autumn increased by 4% and 9.64%, respectively. Thus, the minimum temperature increased overall.
The average maximum temperature increased by 14% for the winter season and by 17% for the
spring season. Additionally, the average maximum temperatures in the summer and autumn seasons
increased by 5% and 1.6%, respectively. Thus, the maximum temperature increased overall for the
future period. Figure 6 shows the simulated values of precipitation. Results highlighted the accuracy
of the proposed climate change model because the observed and simulated data coincided. Also,
the R2, RMSE and MBE values of the climate change model were 0.97, 4, and 3 mm, respectively, for the
precipitation prediction. These results reflected the high accuracy of the applied model. Figure 7 shows
simulated precipitation for the future period. Average precipitation totals in the winter and spring
seasons decreased by 3.6% and 0.75%, respectively, compared to those for the base period. Moreover,
the average precipitation totals in summer and autumn decreased by 3.7% and 1.6%, respectively.
Thus, the precipitation totals decreased overall for the future period.
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Table 1. Statistical analysis for predicted temperature in the base period.

Parameter R2 RMSE MBE

Maximum temperature 0.94 4 2
Minimum temperature 0.96 3.5 1.5
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Figure 6. Simulated precipitation for the base period (1980–1999).
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The total period of the data set that has been used to examine the IHACRES model was 20 years
monthly (12 × 20 = 240 records). The IHACRES model has a few parameters that needed to be tuned
to achieve accurate prediction for the runoff value (reservoir’s inflow). In order to identify the correct
values for these IHACRES model’s parameters, there was a need to calibrate and validate the model.
Therefore, the collected data set was split into different data sets; 156 records were used to calibrate the
model and achieve the correct value of the IHACRES model’s parameters. Then, using the calibrated
IHACRES model to predict runoff using the unseen 84 records to validate the achieved accuracy.
The primary purpose of this step was to assure that when the model will be used for future records
(downscaling records in future period), the accuracy of the runoff (reservoir’s inflow) would be near to
the real value.

Figure 8 illustrates the performance of the IHACRES model in simulating runoff volume. A total of
156 periods were considered in the calibration of this model, and 84 periods were used for verification.
Figure 9 shows the predicted runoff volumes for the base and future periods. Runoff volumes in the
winter and spring seasons decreased by 4% and 23%, respectively, compared to those in the base
period. In addition, runoff volumes in summer and autumn decreased by 4.7% and 3.3%, respectively,
compared to those in the base period.
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Figure 9. Predicted runoffs for the future and base periods.

Table 2 shows a statistical analysis of simulated runoff. Since the coefficient of determination for
the runoff volume was 0.96 in the calibration stage, IHACRES was shown to be effectively applied for
runoff simulation. Additionally, the RMSE and MBE values were negligible.

Table 2. Statistical analysis for predicted runoffs in the base period.

Parameter R2 RMSE (106 m3) MBE (106 m3)

Calibration 0.96 3 1
Verification 0.92 5 3

Table 3 presents a sensitivity analysis of the shark algorithm in the base and future periods.
The optimal population size for the shark algorithm, which is based on minimization the objective
function in the base period, is 30, and M is also 30 in this period. M is the number of points investigated
in a local search by sharks. Additionally, the value of α is 0.78 for the base period. In the future period,
the optimal population size for the shark algorithm is 50, the best value M value is 30, and the value of
α is 0.68. Table 4 shows the results for 10 random runs of the shark algorithm for the base and future
periods. The average solution for the base period was less than that for the future period. Moreover,
the global solution of the problem was obtained using Lingo software (Lingo, 2010) and a nonlinear
programming method. Results indicated that the average solution of the shark algorithm for the
base and future periods was 0.99% of the global solution. Furthermore, the coefficients of variation
were small for both periods. This finding suggests that the shark algorithm provides high-quality
solutions. Evapotranspiration associated with each crop should be calculated to compute the irrigation
demand. Therefore, evapotranspiration was computed based on the crop coefficient and reference
crop evapotranspiration. However, the necessary data were not available for the future period; thus,
the reference crop evapotranspiration was computed based on another method. First, a regression
relationship between the temperature and reference crop evapotranspiration was obtained for the base
period. Then, this equation was used to compute the reference crop evapotranspiration for the future
period based on the simulated temperatures for the future period. Next, the following equation was
used to calculate crop evapotranspiration by

ETC = KCt × ET0 (26)

where ETC is evapotranspiration, KCt is the crop coefficient, and ET0 is the reference crop evapotranspiration.
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Table 3. Sensitivity analysis for reservoir optimization.

Base Period

Population Size Objective Function α Objective Function M Objective Function

10 1.454 0.58 1.565 10 1.454
30 1.312 0.68 1.476 20 1.412
50 1.455 0.78 1.312 30 1.311
70 1.576 0.88 1.415 40 1.398

Future Period

10 1.678 0.58 1.594 10 1.611
30 1.612 0.68 1.525 20 1.567
50 1.525 0.78 1.567 30 1.525
70 1.567 0.88 1.578 40 1.545

Table 4. 10 random results of the shark algorithm for the future and base periods.

Run Base Period Future Period

1 1.455 1.529
2 1.457 1.525
3 1.455 1.525
4 1.455 1.525
5 1.455 1.525
6 1.455 1.525
7 1.455 1.525
8 1.455 1.525
9 1.455 1.525

10 1.455 1.525
Average solution 1.455 1.525

Variation coefficient 0.0006 0.0008
Global solution 1.454

Subsequently, effective rainfall was computed based on the equation

Pe =
Pt

125× (125− 0.2Pt)
← Pt ≤ 250 mm

Pe = 125 + 0.1× Pt ← Pt ≥ 250 mm
(27)

where Pe is effective rainfall and Pt is rainfall.
Equation (27) is taken from the Soil Conservation Service. Next, the net volume of water was

computed based on the equation

WRt = ETC − Pe (28)

Then, the volume of the demand was calculated based on the equation

Vt =
WRt × 10×A

1000000
(29)

where Vt is the volume of the demand and A is the cultivated area.
Water demand for the future was computed based on Equation (29). In this equation, the effective

rainfall is computed based on Equation (27) and generated rainfall by climate change models and
scenarios. Evapotranspiration, based on Equation (26), was then computed. The reference crop
evapotranspiration was based on Penman–Monteith, and the crop coefficient was calculated based on
mean relative humidity, wind speed, and information about the growth periods of crops.
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Figure 10 shows the demand volume for irrigation based on computed climate variables. Demands
increased by approximately 27% in the future period. Figure 11 shows the quantity of released water
in the base and future periods, and this quantity was 8.34% less in the future period than in the base
period. However, irrigation demand in the future period was higher than that in the base period;
thus, the corresponding deficits were larger. Figure 12 presents the storage values for the base and
future periods. Specifically, storage in the future period was 1.21% less than that in the base period
because more water was released in the future period than in the base period. Figure 13 shows the
convergence for the base and future periods; the objective function for the base period converged faster.
Table 5 shows the demand-supply for the base and future periods. Reliability index values for the base
period were greater than those for the future period because irrigation demand increased over time.
Additionally, more water was released in the base period than in the future period. Thus, demands
were better met in the base period. Moreover, vulnerability/resiliency index values in the base period
were less/more than those in the future period.
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Figure 13. Convergence path for reservoir operation.

Table 5. Different indices for reservoir operation.

Index Reliability Vulnerability Resiliency

Base 96% 14% 34%
Future 89% 22% 27%

A new climate change scenario was investigated to present the ability of the proposed procedure
to generate different solutions for the optimal operation rule and strategies for the dam and reservoir
water system. The fifth assessment report of the intergovernmental panel (IPCC) was about new
scenarios based on specific radiative forcing. These scenarios are known as representative concentration
pathways (RCP). One of these scenarios is known as RCP 8.5, which is the most pessimistic one.
Previous studies have applied this scenario to the Canadian Center for Climate Modeling and Analysis
(CanEsm2). RCP 8.5 simulates the maximum radiative forcing pathway of 3 Wat/m2 before 2100, with
a decrement process to 2.6 Watt/m2 after 2100. The reason for selection of this scenario is related
to whether the reservoir can be operated without shortages in the downstream based on RCP 8.5.
The reservoir can respond to the demands in the other scenario because RCP 8.5 is a pessimistic
scenario. The downscaling process was the same as previous scenarios and climate change models.
For example, Figure 14 shows precipitation based on the RCP 8.5 scenario and (CanEsm2). Expected
intensity for the future period for all months was lower than that for base and future periods based
on the AB1 scenario. Figure 15 shows the significant decrease in runoff for scenario RCP 8.5. Results
showed that the runoff decreased by 12% and 17% compared to the base and future periods’ (A1B)
scenarios, respectively.
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a pessimistic scenario. The downscaling process was the same as previous scenarios and climate 
change models. For example, Figure 14 shows precipitation based on the RCP 8.5 scenario and 
(CanEsm2). Expected intensity for the future period for all months was lower than that for base and 
future periods based on the AB1 scenario. Figure 15 shows the significant decrease in runoff for 
scenario RCP 8.5. Results showed that the runoff decreased by 12% and 17% compared to the base 
and future periods’ (A1B) scenarios, respectively. 
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Figure 16 shows the increase in irrigation demand based on scenario RCP 8.5, so that demand
volume for RCP 8.5 was more than that for the base and future periods based on scenario A1B, and
was 14% and 18% more than for the A1B and base period, respectively. Finally, Figure 17 shows that
the released volume for the RCP8.5 scenario was lower than that for the base period and A1B because
inflow to the reservoir and precipitation had decreased for RCP 8.5 and was matched by the average
solution of RCP 8.5 over 10 random results. The average solution for the RCP 8.5 scenario was 1.895,
showing a more significant shortage compared to the base and future periods using the A1B scenario.
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5. Conclusions

In this study, reservoir optimization was investigated based on climate change and the shark
algorithm. A base period (1980–1999) and future period (2046–2065) were considered. The scenario
A1B and the HAD-CM3 model were used to predict maximum and minimum temperatures and
precipitation. Results showed that the maximum and minimum temperatures increased. Additionally,
total precipitation in the future period was less than that in the base period. Runoff volume was then
simulated based on the IHACRES model. Results showed that the runoff volume increased in the
future period, and, as a result, inflow into the reservoir increased. Additionally, the results showed
that irrigation demand, based on computed climate variables in the future period, was higher than
that in the base period, and the amount of water released in the future period was less than that in the
base period. The different indices, such as reliability and vulnerability, indicated that severe deficits
are projected to occur in the future period. Furthermore, the shark algorithm exhibited considerable
potential for effectively solving complex problems. In future studies, hybrid methods, such as a fuzzy
shark algorithm, can be utilized and evaluated. One of the major drawbacks of the current study is that
the proposed mechanism and procedure has been applied and examined using a relatively obsolete
climate change scenario, and, hence, the achieved results could change while utilizing the most recent
scenario. Therefore, there is a need to apply this mechanism and procedure using the most updated
climate change scenario to update the operation rule.
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