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A B S T R A C T

The optimization of heating, ventilating and air conditioning (HVAC) system operations and other building
parameters intended to minimize annual energy consumption and maximize the thermal comfort is presented in
this paper. The combination of artificial neural network (ANN) and multi-objective genetic algorithm (MOGA) is
applied to optimize the two-chiller system operation in a building. The HVAC system installed in the building
integrates radiant cooling system, variable air volume (VAV) chiller system, and dedicated outdoor air system
(DOAS). Several parameters including thermostat setting, passive solar design, and chiller operation control are
considered as decision variables. Subsequently, the percentage of people dissatisfied (PPD) and annual building
energy consumption is chosen as objective functions. Multi-objective optimization is employed to optimize the
system with two objective functions. As the result, ANN performed a good correlation between decision variables
and the objective function. Moreover, MOGA successfully provides several alternative possible design variables
to achieve optimum system in terms of thermal comfort and annual energy consumption. In conclusion, the
optimization that considers two objectives shows the best result regarding thermal comfort and energy con-
sumption compared to base case design.

Introduction

The increased population growth rate has led to a greater demand
for energy [1]. In 2013, the International Energy Agency (IEA) esti-
mated that building has become the third largest energy consumer in
the world [2]. Generally, energy usage in the building is expended on
lighting, electrical equipment and HVAC systems. Several studies show
that half of energy usage in the building is utilized for indoor climate
conditioning [3,4]. Since the last decades, most of power generation
systems in the world use fossil energy such as coal, oil, and natural gas
as their main energy sources [5]. This does not only have the detri-
mental effect of generating and releasing harmful gases such as CO2 and
SOx into the environment, but it also further depletes the limited supply
of fossil fuels. Therefore, the reduction of energy usage in buildings
could minimize greenhouse gas emission. The increase in building en-
ergy consumption is highly affected by building design, change of

occupant comfort standard, building operation, maintenance, and
HVAC system design. All those aspects should be conceived with energy
consumption and occupant comfort in mind.

The radiant cooling system is one of the solutions that can be ap-
plied in the building to reduce the energy demand for the HVAC sys-
tems. In recent years, many researchers have paid more attention to
radiant cooling technology [6]. Radiant cooling is believed to have
higher energy efficiency than the conventional HVAC system in pro-
viding thermal comfort [7,8]. The reason for this is because water has a
higher thermal capacity than air and a pump is generally more efficient
than a fan [9]. Moreover, the temperature difference between water
supply and room ambiance can be very small [10]. Research on radiant
cooling development has been carried out in tropical regions [11,12],
and has been successfully implemented in North America and Europe
[13,14]. However, it is still a new technology in tropical countries such
as Indonesia and required to be developed for the application. Since this
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technology is very effective in dealing with the sensible cooling load, it
could work effectively in buildings with extensive use of glass, where
the penetration of solar radiation into the building is very high. The
main function of the radiant cooling system for tropical application is to
absorb the heat emanating from the solar radiation.

In the real application, it is quite hard to determine the optimal
building design and HVAC system operation in relation to environ-
mental indoor air quality and energy consumption due to a large
number of parameters that should be considered [15]. The building
optimization study to improve the efficiency of HVAC system operation
in the building have been conducted and published in the literature.
Wang et al. [16] have developed a simplified model for the optimiza-
tion and control of a cooling coil unit. Henze et al. [17] demonstrated a
building model in TRNSYS with model predictive control (MPC) for
thermal storage inventory at the active and passive building. Wei et al.
[18] introduced particle swarm optimization (PSO) method to solve the
multi objective-optimization problem of the HVAC system in a typical
office facility. Freire et al. [19] used a predictive control algorithm for
minimizing building energy consumption while maintaining comfor-
table indoor air quality. That paper presented the data-driven models to
build up the relationship between input and output using the machine
learning tool. The machine learning tool has been familiar and widely
used in building energy research [20,21]. Kusiak et al. [20] developed
ANN to build the dynamic models of the energy consumption and
thermal comfort at the single HVAC system. Ferreira et al. [21] pro-
posed radial basis neural network for predictive control to minimize
HVAC energy which uses variable refrigerant flow (VRF) system. Zhou
et al. [22] applied genetic algorithms to optimize building HVAC op-
eration by minimizing energy consumption and maintaining indoor
thermal comfort.

The optimization of the building HVAC system has been conducted
through various methods and purpose described in the literature above.
However, most of them focused on a single HVAC system that includes
either radiant or VAV system only. The optimization of the combined
HVAC system, including radiant cooling and VAV chiller systems op-
eration is presented in this paper. The objective of this research is to
develop a novel approach for multi-criteria optimization of building
energy consumption through a MOGA optimization method, ANN, and
IESVE programs. This paper addresses the multi-objective optimization
of a two-chiller system where VAV and radiant system are working si-
multaneously, showing the potentiality of this method in determining
the appropriate operation of complex HVAC systems.

Methodology

Thermal comfort

Thermal comfort in the building is difficult to measure since it is
very subjective and highly dependent on temperature, humidity, oc-
cupant’s activity, air velocity, clothing insulation, radiant temperature,
and metabolic rates. Generally, every person will experience the sen-
sation of air condition a bit differently based on their own personal
habits and psychology. Two common indicators can be used to measure
thermal comfort i.e. predicted mean vote (PMV) and the predicted
percentage of dissatisfied (PPD) which is founded by Fanger [24]. PMV
refers to the thermal scale ranging from −3 (very cold) to +3 (very
hot). The indoor air condition can be considered to be comfortable if
PMV is close to zero. PPD represents the prediction of the percentage of
occupants that feel uncomfortable or dissatisfied with the air condition.
Whenever PMV moves closer to zero, PPD decreases and vice versa.
PPD values range from 0% to 100%.

Building descriptions

The educational building located in West Java, Indonesia has been
selected for modeling thermal comfort and energy performance. The
building has a conditioned space of 2.088m2, a ceiling height of 3.2 m,
the wall thickness of 0.2 m, and glazing areas of 10.8 m2 distributed
along the south and the north wall. The building has 4-storeys and all
zones are used for lecture activity. Every window is equipped with an
overhang to reduce solar heat gain. The geometry of the building is
presented in Fig. 1. The building construction and materials are shown
in Table 1.

HVAC systems

The building used in the present study features two chillers which
are intended to supply chilled water for radiant cooling and the VAV
systems. Additionally, the building is equipped with a heater to prevent
condensation. The layout of the cooling system can be seen in Fig. 2.
Chiller 1 with a cooling capacity of 32 TR is used for radiant cooling
and chiller 2 has a cooling capacity of 41 TR for the VAV system. The
radiant and VAV cooling systems work simultaneously for the building
HVAC operation. The radiant systems are installed in the floor and
ceiling of the building which is mostly used to handle the sensible load.
On the other hand, the VAV system equipped with DOAS is utilized to

Fig. 1. Geometry of educational building (a) simulation (b) real [23].
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deal with the latent load. The fresh air is circulated through the air
handling unit (AHU) and exit via the exhaust. The schematic diagram of
the radiant and VAV system is shown in Fig. 3. Chilled water flow and
temperature of the radiant system is controlled manually. Meanwhile,
the VAV system is controlled automatically in accordance with the
cooling load.

Building simulation

Annual building energy consumption and PPD are calculated using
IESVE software. Simulation is conducted by modeling the building as
precisely as possible with the actual building structure presented in
Fig. 1. Weather conditions are obtained from Metronome software li-
brary. The weather parameters were measured throughout ten years
and the average of each parameter is used as input simulation. The
input parameters for simulation including temperature, humidity, and
building internal load are adopted from the actual building operation.
The number of occupants varies from 2 to 12m2/person according to
the room function. Lighting and electrical equipment loads are set as
6W/m2 and 12W/m2 respectively. The cooling load generated by the
occupants is set as 115W/person where 70W is sensible load and 45W
is latent load. The simulation is ran from 08.00 to 17.00 on weekdays
and assumed that there is no activity in the building at the weekend.

The validation result of the simulation is shown in Fig. 4. The large
simulation error depicted at 6:00, 15:00, 17:00, and 22:00 is highly
affected by the number of occupant fluctuation which is difficult to
determine exactly. However, the result of simulation shows a similar
trend in chiller energy consumption compared to the real case. The
validation has averaged absolute error of 63.65 kW with the chiller
energy consumption ranging from 601 kW to 903 kW.

ANN modeling

ANN is a machine learning tool that can be used to learn the re-
lationship between input and output variables to predict system per-
formance. It can work like a black box model that requires no detailed
parameters of the system. ANN’s working principle is inspired by the
human brain as it consists of inputs, neuron, hidden layers, and output.
In its simplest form, the input is multiplied by weight functions. Then
the product and bias function is summed and sent into transfer func-
tions to produce the final output. Several architectural ANN models
have been successfully applied in building and air conditioning system
application for predicting absorption system performance [25]; liquid
desiccant system performance [26]; building heating load [27]; indoor
air temperature and humidity [28].

An ANN model with multilayer perceptron network (MLP) is de-
veloped to predict annual building energy consumption and PPD va-
lues. As shown in Fig. 5, the MLP network consists of input layer,
hidden layer and output layer where all inputs are connected to the
neurons, and all neurons are connected to the output.

The correlation between the input u(k) and output y(k) in the MLP
network can be written mathematically as follows

= +y k f w x k b( ) ( ( ) )2
2

2 (1)

Table 1
Material of building.

Layer Wall Roof Floor Window

Layer 1 Face Brick Insulation Soil Solar 6MM
Layer 2 Insulation Metal Deck Cavity Cavity
Layer 3 Heavy

Concrete
Cavity Insulation Clear Float

6MM
Layer 4 Metal Deck
Layer 5 Concrete

Lightweight
Carpet and Pad

U-Value (W/
m2.k)

0,536 0,273 0,294 2,086

Fig. 2. HVAC system configurations [23].

Fig. 3. Schematic diagram of radiant and VAV system [23].
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= +x k f w u k b( ) ( ( ) )1
1

1 (2)

where x(k) indicates the output vector from the hidden layer. Then w2

and w1 represent the connection weight matrix from the hidden layer to
the output layer and from the input layer to the hidden layer. The
notation b1 and b2 show bias numbers in the input layer and the output
layer [29]. Furthermore, f1 (.) and f2 (.) represent the transfer functions
of the hidden layer and output layer, respectively. The transfer function
used in the present study is a Tangent sigmoid function that can be
expressed as

=
−

+

−

−
f z e

e
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z

z

2
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z represents a function of = ∑z f w x( )i i where i is the index on inputs to
the neuron, xi is the input to the neuron, wi is the weighted factor at-
tached to the input, z is the weighted input [30]. The accuracy of
prediction is measured using RMSE (root mean square error).

∑= −RMSE
p

t o1 | |
j

j j
2

(4)

where p represents the number of datasets; tj is a target; oj is an output
value respectively.

The training process is conducted by optimizing weight and bias
coefficients to minimize the error between target and ANN output. The
structure of ANN for the building performance prediction is shown in
Fig. 6. It is designed using 10 inputs, 3 neurons, and 2 outputs. In this
work, Bayesian regularization is applied to avoid overfitting and im-
prove the generalization capability of the network.

The performance of the designed ANN configuration is evaluated by
conducting training and validation using different data. The data sets

are firstly divided into two groups. The first 150 datasets are employed
for training and the other 100 datasets are used for validation. The
performance of training and validation is shown in Figs. 7 and 8 re-
spectively. The training and validation result shows a strong agreement
between the calculated and predicted value for both annual energy
consumption and PPD. The PPD value ranges from 10.09% to 29.34%,
while energy consumption ranges from 4.71MWh to 10.81MWh. This
proves that the designed network configuration is feasible and can be

Fig. 4. Validation result of building energy simulation.

Fig. 5. Multilayer perceptron network.

Fig. 6. The structure of ANN with inputs and outputs.
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used to predict building performance in different condition. Subse-
quently, all the data are included for training. The performance of
training using 250 data sets is shown in Fig. 9. The result shows that the
training performance using 250 and 150 data have similar degrees of
accuracy, which suggests the consistency of the model to be used for
prediction.

Optimization algorithm

Optimization algorithms are generally divided into two types,
namely conventional gradient-based methods and gradient free direct
methods [22]. The gradient-based method is one of the classical opti-
mization methods which use derivatives of the objective and constraint
function in searching for the optimal solution process. The performance
of this algorithm is highly dependent upon the initial values supplied. It
effectively converges to the optimal solution if the objective and

Fig. 7. Training result using 150 data sets (a) energy (b) PPD.

Fig. 8. Validation result using 100 data sets (a) energy (b) PPD.

Fig. 9. Training result using 250 data (a) energy and (b) PPD.
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constraint function is differentiable. Most gradient-based optimizers
cannot work effectively with discontinuous or non-differentiable func-
tions. Since the relationship of the building parameters with each other
is nonlinear, which generates discontinuous function [31], this algo-
rithm is not suitable for optimization in the building. The gradient free
direct method has instead been proved to be applicable for optimization
in building application [22]. This can be used to solve problems that are
difficult to solve using gradient-based methods. Genetic algorithm, one
of the gradient-free direct methods, has been successfully applied for
optimization on HVAC system controls [32], green building design [33]
and thermal and energy performances of refrigeration system [34].

Genetic algorithm work is inspired by the biological processes of
reproduction and natural selection to find the fittest solution [35]. The
important steps involved in this algorithm are a reproduction, selection,
crossover and mutation [36]. The fundamental procedure of the genetic
algorithm for the optimization process is shown in Fig. 10. It begins
with population generation to produce several potential solutions to the
problem. The next is conducting an evaluation on fitness function
which represents the objective function that should be optimized. In
this evaluation, the best parents are selected to generate the next po-
pulation. After fitness evaluation, mate selection is required to allow
the selected parents to undergo cross over. Furthermore, the new po-
pulation is generated to replace the old one. This process works con-
tinuously until the termination criteria is met.

Optimization approach

Multi-objective optimization with two objective functions is em-
ployed in the present study. Annual building energy consumption and
PPD are chosen to be the first and second objective functions, respec-
tively. Several parameters obtained from the building envelope and
chiller operation are selected as decision variables because they affect
the annual energy consumption and PPD while the HVAC system is

operating. The range of decision variables is presented in Table 2 and
designed following the behavior of the actual HVAC system applied in
the selected educational building. Cooling and RH set points are de-
termined according to ASHRAE standards for tropical region applica-
tion. Thermostat delays are set at different values to attain the ad-
vantage of building thermal mass to reduce energy consumption while
maintaining thermal comfort. Building structural parameters, including
window area and wall thickness are varied to see the effect of these
variables on energy and thermal performance. Chiller supply tem-
perature and mass flow rate are assigned to provide cooling as required.

The procedure of optimization conducted in this paper is briefly
explained in Fig. 11. The process begins with the data sets fabrication
by modeling and calculating annual energy consumption and PPD using
IESVE software. The combination of data sets that represent 250 dif-
ferent conditions is produced using the Latin hypercube sampling
method [37]. Every single condition is simulated within 10min. It

Fig. 10. Genetic algorithm processes in optimization [36].

Table 2
Data range for optimization.

Decision variables Range Unit

Cooling set point 22–27 °C
Rh set point 40–60 %
Starting delay 0–30 min
Stopping delay 0–60 min
Supply air flow rate (VAV system) 140–220 L/sec
Window area 7–17 m2

Wall thickness 0.05–0.25 m
Supply air temperature (VAV system) 14–18 °C
Supply radiant temperature (radiant system) 14.8–18.5 °C
Supply radiant flow rate (radiant system) 0.2–0.4 L/sec

Fig. 11. Optimization framework.
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required 2500min (more than 40 h) to finish all simulations. Subse-
quently, the combination of ANN and MOGA is applied to solve the
optimization problem. The data sets are used for training, to correlate
between decision variables and two objectives using ANN. The network
obtained from the above mentioned training is employed to predict PPD
and building energy consumption using the new input combination
which is generated by iteration of decision variables in the desired
range. The minimum and maximum values of each decision variable are
considered to be the lower and upper bound of optimization, respec-
tively. Furthermore, the genetic algorithm will find the optimum so-
lution in minimizing PPD and building energy consumption.

A multi-objective problem can be defined using the equation as
follows [38]:

= ∀ = ⋯x x i NFind ( ) 1, 2, .i par (5)

∀ = ⋯f x i NMinimizing or maximizing ( ) 1, 2,i obj (6)

= ∀ = ⋯g x j m( ) 0 1, 2,j (7)

= ∀ = ⋯h x k n( ) 0 1, 2,k (8)

where x represents the decision variable vectors, Npar indicates number
of decision variables, f x( )i is objective function, Nobj is number of ob-
jective functions, g x( )j and h x( )k describes equality and inequality
constraints, while m and n shows number of equality and inequality
constraints.

Results and discussion

Optimization result

The optimization of the HVAC system has been accomplished using
ten decision variables and two objectives. Fig. 12 shows the Pareto
optimal solution for optimization of annual energy consumption and
PPD in the building. It clearly indicates the conflict between the two
objective functions. The decrease in energy consumption ranging from
4.76MWh to 7.48MWh led to a rise in PPD from 8.17% to 15%. Point A
provides the solution with the minimum PPD (8.17%), which represents
the maximum thermal comfort. However, this is associated with the
highest energy consumption (7.48MWh). Conversely, point B provides
the solution with the lowest energy consumption (4.76MWh), but very
high in PPD (15%). Point B would have been chosen if energy was
considered as the only objective. Meanwhile, point A is the best solution
for a case where thermal comfort is the main priority.

In the multi-objective optimization method, all results provided in
Pareto front are non-dominated [39]. They can be preferred arbitrarily
as the solution according to the acceptable range of the desired criteria.
Practically, one solution that represents the desired operating point

should be taken. The technique for order preference by similarity to an
ideal solution (TOPSIS) is chosen to select the most optimum solution.
This method has been frequently used to select the final optimum de-
sign point in similar optimization problems [40,41]. In TOPSIS decision
making method, ideal and non-ideal solutions should be determined
first. The ideal solution is obtained from the optimum value of each
single objective, while the worst values of each objective are considered
to be a non-ideal solution [39]. Consequently, the optimum solution
can be assigned by selecting the point which has the shortest distance
with the ideal solution and the furthest distance with the non-ideal
solution [42].

In Fig. 12, the optimum solution selected while considering two
objectives is indicated by point C, which is associated with energy
consumption and PPD of 6.12MWh and 9.14%, respectively. Table 3
demonstrates the corresponding value of optimal designed variables
resulting from the multi-objective optimization method. Comparison of
energy consumption and PPD value between the base case and the
optimization result is also presented in Table 3. The base case re-
presents the simulation condition where design variables are adopted
from the existing educational building during the operation period. The
base case simulation shows lower energy consumption (4.4MWh)
compared to the optimized design (point C), however, its PPD is very
high (27%). According to ASHRAE standards, the acceptable PPD for
thermal comfort should be less than 10% [39]. Therefore, the solution
in point C can be considered to improve thermal comfort while assuring
low energy consumption.

During the optimization process, most decision variables generally
iterate to find the value in a wide range to reach all optimal trade-offs
between two objectives. However, there are some variables set in the
lower or upper bound value. The prevailing result in the optimization
shows that the starting and stopping delays set to a minimum value
indicating these parameters effect are not significant on the objectives.
Moreover, wall thickness and window area also tend to set in the
maximal and minimal values, respectively for all cases. The larger
thermal mass led to a decrease in thermal resistance and an increase in
heat capacity of the wall. Then a smaller window area can reduce heat
gain from solar radiation. Hence the change of window area and wall
thickness does not have much effect on the conflict between two ob-
jectives in the optimization problem. Furthermore, for temperature,
humidity, supply temperature and mass flow both in the radiant and
VAV system are essential in providing proper thermal comfort.

Effect of cooling and RH set point

Fig. 13 shows the simulation results depicting the effect of cooling
and humidity set point on energy consumption and PPD. Changing
these two parameters led to variations in energy consumption and PPD.
The cooling setpoint is varied from 22 °C to 27 °C and other variables
are set to be constant close to an optimum value. While humidity
variable range from 40% to 90%. As the temperature and humidity setFig. 12. Optimization result of building and HVAC system.

Table 3
Optimization result of building design.

Parameters Base case A B C Unit

Cooling set point 24.50 23.11 27 23.89 °C
RH set point – 43.98 42.58 43.17 %
Starting delay 0.25 1.01 0.69 0.92 min
Stopping delay 0.50 1.07 1.08 0.97 min
Supply airflow rate 190.96 184.41 155.5 183.8 L/sec
Window area 10.80 7.17 7.05 7 m2

Wall thickness 0.20 0.25 0.25 0.25 m
Supply air temperature 23.00 14.35 16.59 14.3 °C
Radiant supply temperature 22.00 15.68 15.3 15.55 °C
Supply radiant flow 0.20 0.3 0.39 0.35 L/sec
PPD 27.50 8.17 15 9.14 %
Annual energy consumption 4.40 7.48 4.76 6.12 MWh
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point increases, the energy required to maintain indoor air in comfor-
table air conditioned decreases. This is due to the fact that when the
temperature and humidity difference between a set point and ambient
is slight, the workload of the HVAC system, including the cooling and
dehumidifier system is less. Subsequently, the increase in temperature
and humidity set point causes PPD to increase. It is clear that when the
temperature and humidity set point moves further from the comfort
range standard, the PPD goes up.

Based on the optimization result presented in Table 3 the cooling set
point at around 23 °C for point A and C conforms to the ASHRAE
standard for indoor air temperature comfort. However, for point B, the
cooling setpoint is set at 27 °C. Since the gap between ambient tem-
perature and the cooling set point is small, the energy required for
cooling is low. It is obvious that point B has the lowest energy con-
sumption compared to others due to the high cooling set point. The RH
setpoint is set to around 42–43%, which is still in the comfortable range
[43].

Effect of supply air temperature and flow rate

Fig. 14 shows the simulation results describing the effect of supply
air temperature and flow rate on annual energy consumption and PPD.
The performance of the VAV system is highly affected by these two
parameters. The variation of supply air flow rate and temperature
causes a change in the heat removal and annual energy consumption of
the VAV system. In Fig. 14(a) supply air temperature is varied from
15 °C to 23 °C with other variables set at constant values. As the supply
air temperature increases, the energy from chiller required to maintain
the air room condition decreases because the workload of the chiller
system is depending on the temperature difference between ambient
and supply air temperature. Since energy consumed by VAV chiller is
dominant, consequently the higher supply air temperature leads to a
lower workload of a chiller system, otherwise the lower supply air
temperature will result in the higher workload of the VAV chiller

system. Moreover, the increase in supply air temperature causes an
increase of PPD owing to a slower cooling process. When the tem-
perature difference between cooling set point and supply air tempera-
ture is moderate, it takes a longer time to achieve a room temperature
within the comfort range. Hence, if the supply air temperature moves
further away from the comfort range standard, PPD increases. Other-
wise, when a lower supply air temperature is provided, PPD decreases.

In Fig. 14(b) supply air flow rate is varied with other parameters are
set to be constant. The change in supply air flow rate leads to energy
consumption and PPD fluctuate. However, Fig. 14(b) indicates that, as
the supply air flow rate is ranging from 154 L/Sec to 210 L/Sec, a very
small change in energy consumption and PPD is observed. In the pre-
sent study, it can be noted that the energy consumed by the fan for air
circulation in the VAV system is not dominant among total energy
consumption of the HVAC system. Furthermore, the effect of supply air
flow rate is not as significant as the supply air temperature, which it is
directly related to thermal comfort.

Effect of supply radiant temperature and flow rate

Fig. 15 shows the simulation results of supply radiant temperature
and the flow rate effect on annual energy consumption and PPD. In this
simulation, only supply radiant temperature and the flow rate are
varied and other parameters are set to be constant to demonstrate the
effect of these two parameters on energy consumption and PPD. The
supply radiant temperature and the flow rate are varied from 16 °C to
20 °C and 0.24 L/Sec to 0.4 L/Sec, respectively. The rise of supply ra-
diant temperature causes higher energy consumption and PPD goes up.
This can be explained considering that, when the temperature differ-
ence between supply radiant temperature and the cooling set point is
small and radiant flow rate is constant, the contribution of radiant
cooling system to remove the heat is less. Consequently, the VAV chiller
system works very hard to cover a required cooling capacity to achieve
the desired temperature. Theoretically, a higher supply radiant tem-
perature is related to the lower energy consumption of the chiller for
the radiant system. However, the change of supply radiant temperature
from 16 °C to 20 °C leads to an increase in the energy consumption by

Fig. 13. Effect of (a) cooling and (b) humidity set point on annual energy
consumption and PPD.

Fig. 14. Effect of supply air (a) temperature (b) flow rate on annual energy
consumption and PPD.
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approximately 1.57%. This is small if we compare it with the energy
consumed by the VAV chiller system, where the change of supply air
temperature from 15 °C to 23 °C causes a decrease in the energy con-
sumption around 8.6%. Hence the energy consumption of the VAV
chiller system is dominant within this combined HVAC system.

Furthermore, the effect of supply radiant temperature on PPD is
similar to the effect of the supply air flow temperature. If the supply
radiant temperature is close to the comfort temperature the standard
PPD will decrease and vice versa. In Fig. 15(b) the increase in supply
radiant flow rate from 0.24 L/Sec to 0.4 L/Sec causes a decrease in
energy consumption by approximately 1%. Since a higher supply ra-
diant flow rate leads to a higher cooling capacity that can be provided
to remove the heat load, when the radiant flow rate increases the
workload of chiller decreases. Correspondingly, the thermal comfort
can be achieved quickly. Thus, the increase of supply radiant tem-
perature will decrease energy consumption and PPD even though in a
small amount.

Conclusions

In this work, a university building equipped with radiant cooling
and VAV systems has been modeled and simulated to evaluate annual
energy consumption and thermal comfort performance through PPD
value. Multi-objective optimization methodology that combines ANN
and MOGA has been successfully applied for defining the optimal
building operation. The designed ANN configuration shows a precise
prediction in the training phase with the RMSE of 0.3 and 1 for energy
consumption and PPD, respectively. According to the optimization re-
sults, the multi-objective optimization shows a significant improvement
in HVAC operation as for thermal comfort, while keeping low annual
energy consumption when compared to the base case design. The
spreading solution generated in the Pareto front provides many alter-
native design options. The research conducted in this paper can be used
to help building management to design and select a control strategy to
operate HVAC systems effectively. The research methodology applied in

the present study can be referred to solve complex optimization pro-
blems on HVAC systems and building designs.
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