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Abstract: This research work focuses on the mechanical 

properties and microstructural behavior of high-purity CeO2 and 

MnO2-doped Y-TZP. The compositions were varied with different 

weight percentage i.e from 0.5 to 1.5wt%. The samples were 

homogenously mixed using wet milling and ball milling 

operations. Then, the samples were shaped into circular discs and 

rectangular bars by uniaxial pressing at 200 MPa and then 

pressure less-sintered at various temperatures between 1250˚C 

and 1450˚C. 1h holding time was applied before cooling down. 

The results have shown, that the addition of dopant and sintering 

temperature has significantly contributed towards the 

enhancement of the mechanical properties of Y-TZP. The 

mechanical properties in relation to bulk density, Young’s 

modulus, Vickers hardness, and flexural were measured. The best 

mechanical property values for the CeO2 and MnO2-doped Y-TZP 

ceramics were 5.67 Mgm-3 and 8.46 GPa for density and Vickers 

hardness, respectively. The best flexural strength and Youngs 

modulus values obtained from the experiment were ~900 MPa 

and 210 GPa respectively. These results indicate that the addition 

of dopants have reinforced the densification parameters and 

toughened the samples.  These results were obtained for the 

composition of 0.5wt% MnO2 and 0.5wt% CeO2 sintered at 

1350˚C. 

 

Index Terms: CeO2, MnO2, Mechanical Properties, 

Microstructure 

I. INTRODUCTION 

Zirconia is known for excellent mechanical properties; 

hence it holds a unique place amongst all oxide ceramics. 

Zirconia impart transformation toughening, because zirconia 

maintains strength and chemical inertness. Besides, 

Yttria-stabilised tetragonal zirconia polycrystalline ceramics 

(Y-TZP) has been a very popular engineering material, as the 

mechanical properties is outstanding. Y-TZP has been widely 

used in many applications like engine parts, valves, cutting 

tools, and moulds. This is due to their good fracture 

toughness, high strength, elastic modulus, and wear resistance 

[1-3].  

Because of its stabilizing effect of yttria, Y-TZP ceramic is 

possible to be processed in the metastable tetragonal (t) 

structure. This process is crucial as the retention of the (t) 

phase at ambient temperature allows it to transform to the 
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monoclinic (m) structure under external applied stress [4-5]. 

On the other hand, in humid condition, especially 

temperatures ranging from 20°C to 500°C, the Y-TZP 

ceramics exhibit an obvious low temperature ageing 

phenomenon. This phenomenon is also known as low 

temperature degradation (LTD) or hydrothermal ageing [6-7]. 

Despite the many favorable characteristics of Y-TZP such as 

excellent mechanical properties and wear properties, there is 

this drawback that is caused by the Y-TZP. LTD happens 

when tetragonal (t) to monoclinic (m) phase transformation, 

takes place rapidly in the samples. 

Therefore, different experiments have been performed to 

study the micro mechanism of (t) to (m) phase transformation, 

to curb the LTD phenomenon, to mitigate the microcrack 

expansion [8-16]. Based on research findings, the addition of 

ceramic oxides (MgO, Al2O3, ZnO, CaO, and CeO2) help 

overcome if not prevent the low temperature degradation 

occurrence in Y-TZP ceramics [17-21]. CeO2 is generally 

used to stabilize the tetragonal phase of zirconia and is also 

known to increase the sintering of glass ceramics and strength 

and thermal stability. This work presents effect of different 

parameter on the surface morphology and particle 

distribution. 

II. MATERIALS AND METHODS 

In this research the main powder used was, a 

co-precipitated sprayed dried 3mol% yttria-zirconia 

(Y-TZP). This powder was manufactured and supplied by 

Kyoritsu Japan. At the same time, different amounts of high 

purity CeO2 and MnO2 (undoped, 0.5, 1.0 and 1.5wt% doped 

Y-TZP) powders were prepared using a wet colloidal method. 

The zirconia balls and ethanol were used as the milling and 

mixing medium in the ultrasonic machine. Upon the mixing 

operation, the slurry obtained was oven dried at 60˚C for 12 

hours. The dried sample was then sieved, and the powder was 

readied for pressing operation.   

Then, the powder was formed into circular discs and 

rectangular bars, which were compacted at  

0.3 MPa and pressed iso-statically at 200 MPa. To further 

harden the samples, the pressed samples were pressureless 

sintered in air using a heating furnace, ModuTemp.  
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The samples were fired at temperatures ranging from 

1250˚C to 1450˚C. The holding time was maintained at 1h 

before cooling to room temperature. The sintered samples 

were then, ground on SiC papers of 120, 240, 600, 800 and 

1200 grades successively, followed by polishing with 6 µ 

diamond paste. This grinding and polishing processes were 

carried out to produce a smooth and reflective surface.  

  The mechanical properties test was conducted by 

calculating bulk density for the sintered samples. Archimedes 

principle was used to obtain the bulk density. This was done 

using an electronic balance retrofitted with a density 

determination kit (Mettler Toledo, Switzerland).  

  The instrument (GrindoSonic: MK5 “Industrial”, 

Belgium) was used to determine the Young’s modulus (E), 

using sonic resonance. This instrument determines the 

resonant frequency of a sample through the vibrational 

harmonics of the sample using a transducer. Through tapping, 

the vibrations are physically induced in the sample. The 

Young’s modulus or also known as the modulus of elasticity 

was calculated using the experimentally determined resonant 

frequency (ASTM, 1998) [22].  

  The Vickers hardness measurements (Future Tech., 

Japan) was performed using the polished samples which is 

called the Vickers indentation method. A loading time of 10 s 

was employed while the indentation load was kept constant at 

98.1 N. The equation derived by Niihara et al used to compute 

the values of KIc [23]. 

   The microstructure of the samples was evaluated by 

JSM-6310 scanning electron microscopy (SEM). The test was 

conducted to investigate the microstructure and morphology 

of the best sintered samples with excellent mechanical 

properties. 

III. RESULTS 

A.  Bulk Density 

Fig. 1 shows the bulk density results against sintering 

temperatures for undoped and CeO and MnO doped Y-TZP. 

The bulk density of doped Y-TZPs has shown significant 

change through the addition of 0.5, 1.0, 1.5 wt% CeO and 

MnO as compared to the undoped Y-TZP. The bulk density of 

the undoped and 1.0 wt% CeO and MnO doped samples 

obtained similar trend with the increase of sintering 

temperature where the bulk density increased in the beginning 

(1250°C to 1350°C) and decreased when the sintering 

temperature was increased to 1450°C. For the 0.5 wt% CeO 

and MnO doped Y-TZP, the trend started with a decrease of 

bulk density from temperatures 1250°C to 1350°C and then 

increased when sintered at 1450°C. Addition of CeO2 and 

MnO2 were found to be most beneficial between 1350°C to 

1450°C as the samples were almost completely dense as 

compared to the undoped Y-TZP. The Y-TZP sample with  

1.5 wt% CeO and 1.5 wt% MnO obtained the highest bulk 

density value of 5.7611 Mgm
-3

 sintered at 1450°C, about 95% 

of theoretical density of Y-TZP (6.09 g/cm
3
). The Y-TZP 

sample with 0.5 wt% CeO and 0.5 wt% MnO also obtained 

high bulk density value of 5.6709 Mgm
-3

 sintered at 1450°C, 

about 94% of theoretical density of Y-TZP (6.09 g/cm
3
). This 

portrays that excellent bulk density can be achieved by 

sintering samples at high temperature. This is due to high 

diffusion ability of dopants in Y-TZP matrix. Similarly, the 

obtained results also show a trend matching with other 

researchers who have carried out work using CeO2 and MnO2 

as sintering additives in Y-TZP [24-25]. 

 

Fig. 1 Effect of sintering temperature on the bulk density 

of the MnO2/CeO2-Y-TZP composites 

B.  Vickers Hardness 

Fig. 2 shows the effect of sintering temperature against 

CeO2 and MnO2 addition, towards the Vickers hardness of 

Y-TZP composites. Based on the results obtained, the 

addition of CeO2 and MnO2 were beneficial in enhancing the 

hardness of zirconia when sintered at lower sintering 

temperature (i.e. 1250˚C) as compared to the results obtained 

at 1450°C. It was observed in Fig. 2 that the highest hardness 

value of approximately 8.46 GPa was achieved for the 0.5 

wt% of CeO2 and 0.5 wt% of MnO2 composition for samples 

sintered at 1350˚C. However, with the increase in sintering 

temperature, 1450°C, the 0.5% CeO2 and 0.5wt% MnO2 

composition displayed a drastic decrease in hardness. The 

decrease in hardness could be due tetragonal to monoclinic 

phase transformation of ZrO2 for 0.5 wt% CeO2 and 0.5 wt% 

MnO2 composition. On a contrary, the increase in hardness 

occurs as the number of micro-cracks occurring within the 

ceramic, during the measurement of Vickers’s hardness is 

reduced [26]. Generally, good hardness values were obtained 

at lower sintering temperature.   

 

Fig. 2 Effect of sintering temperature on the Vickers 

hardness of the CeO2/MnO2-Y-TZP composites 
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C.  Flexural Strength  

From Fig. 3, the strength of Y-TZP composites was 

responsive towards the sintering temperature, as it gradually 

increased from 1250°C to 1350°C and dropped at 1450°C. It 

was evident that the addition of CeO2 and MnO2 to Y-TZP 

yielded an increase in flexural strength, with a relatively high 

rate of increase at 1350°C. The 0.5wt% CeO2/0.5wt% MnO2   

composition was the best as compared to other compositions. 

In particular, the sample consisting 0.5wt% CeO2/0.5wt% 

MnO2 has shown the highest flexural strength values; 

increasing from ~800 MPa at 1250˚C to ~900 MPa at 

1350°C. This result exceeded the theoretical value of flexural 

strength for Y-TZP of 900 MPa [27]. Hence, this shows the 

grain size contributes significantly towards the 

diffusion-controlled transformation of zirconia. A larger grain 

size would result in a detrimental effect to the Y-TZP 

ceramics. Decrease in strength happens because of the 

propagation of microcracks and the growth of tensile residual 

stresses, whereas in this composition it conforms that the 

crack propagation was mitigated [28]. 
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Fig. 3 Effect of sintering temperature on the Flexural 

strength of the CeO2/MnO2-Y-TZP composites 

D.  Youngs Modulus 

Fig. 4 shows the effect of the addition of cerium oxide and 

manganese oxide doped Y-TZP on the Young’s modulus. The 

results showed similar trend like the flexural strength where 

the Young’s modulus of Y-TZP too increased gradually from 

1250˚C to 1350˚C and dropped at 1450˚C. The major effect 

of CeO2 and MnO2 when sintered especially at 1350˚C, has 

enhanced the matrix stiffness of Y-TZP. It is notable that the 

0.5wt% CeO2/0.5wt% MnO2 samples achieved the highest 

Young’s modulus value of 210GPa at 1350˚C, which is 

slightly higher than the theoretical Young’s modulus value 

which is 200GPa. However, the samples sintered above 

1350°C, showed a decrease in Young’s modulus for all 

samples which illustrates a decrease in elasticity. The 

decrease in Young’s modulus is due to the increasing porosity 

with increasing sintering temperature [29-30]. On a contrary, 

the addition of ceria does not cause any defect to the surface 

or form micro-cracks that could affect the Young’s modulus 

as reported by other researcher [31]. 

 

 

 

Fig. 4 Effect of sintering temperature on the Youngs 

Modulus of the CeO2/MnO2-Y-TZP composites 

E.  Microstructure Evaluation 

The addition of CeO2 and MnO2 also contributed towards 

the transformation toughening mechanism. Thus, the 

microstructure and the morphology of the samples were 

analyzed using the Scanning Electron Microscope (SEM). 

The samples were coated with a layer of platinum before the 

SEM imaging was performed. This is to avoid the occurrence 

of charging. The morphology and grain size of the best 

compositions 0.5wt% CeO2/0.5wt% MnO2 was investigated. 

This sample displayed an average grain size value of 

approximately 464.92nm. The SEM micrograph for this 

sample is depicted in Fig. 5. The significant increase in grain 

size of the 1.0wt% CeO2/1.0wt% MnO2 could be due to the 

phase transformation from tetragonal to monoclinic. A larger 

grain size could have been formed due to microcracks of the 

intergranular boundaries which may be due to sintering at 

high temperature [32]. LTD which is known as the 

transformation from tetragonal to monoclinic phase, happens 

in biomedical applications, through the propagation of 

martensite, and this leads to hydrothermal ageing [33]. Hence, 

this transformation is highly sensitive to mechanical and 

chemo-mechanical stresses. It can be said, this transformation 

is the contributing factor towards fracture toughening in 

stabilized zirconia [34]. Hence, the results obtained for the 

flexural strength in this research was relatively high for 

0.5wt% CeO2/0.5wt% MnO2 composition sintered at 1350˚C 

which is an excellent contribution factor towards mechanical 

properties of biomedical applications. 

 

Fig. 5 The SEM image for 0.5wt% CeO2/0.5wt%MnO2 
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IV. CONCLUSION 

The results from this research show that the mechanical 

properties of the compositions have been enhanced by the 

addition of 0.5wt% CeO2 and 0.5wt% MnO2 with Y-TZP. The 

results portrayed excellent density achievement, i.e  

5.67 g/cm
3
, which is about 94% of the theoretical density of 

Y-TZP. Besides, mechanical properties (i.e. Vickers 

hardness, Young’s Modulus and flexural strength) also 

experienced significant results. In addition to that, the 0.5wt% 

CeO2 and 0.5wt% MnO2 composite displayed higher Young’s 

modulus of 200GPa. Sintering above 1450˚C has shown 

degeneration in the composite’s physical and mechanical 

properties. Sintering at higher temperatures (>1350°C) had 

affected the mechanical properties of the composite, due to 

bigger grain size obtained at higher temperature. 
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