
Prototyping a Lightweight Encryption on a Field
Programmable Gate Array for Securing

Tele-Control Data

Razali Jidin1, Siti Noradhlia Tukijan1, Ibrahim Al-Bahadly2, Norziana Jamil3, Qais Saif Qassim3

1College of Engineering, Universiti Tenaga Nasional, Malaysia
2School of Engineering and Advanced Technology, College of Sciences, Massey University, New Zealand

3College of Computer Science & Information Technology, Universiti Tenaga Nasional
razali@uniten.edu.my

Abstract- Financial and lives lost are possible consequences
when disruption of an electricity supply occurs, due to security
breaching of an industrial control system (ICS). Enhancing
security of a geographical-wide ICS such as supervisory
control and data acquisition (SCADA) system will require
considerable efforts and capital. In addition to cost, system
time sensitivity is also a major issue when one wants to
implement security schemes at the existing SCADA. In
addition to introduction on the need to secure SCADA, this
paper is to focus on encryption for SCADA that are already in
operation. Selecting a lightweight cipher such as lightweight
encryption devices (LED) with its mathematical algorithms
that suits hardware implementation, allows a complete cipher
system to be hosted on a single low-cost FPGA, while satisfying
time-latency of encrypting/decrypting of SCADA data packets.
Though LED has no key scheduling and small key length, its
security level is comparable to that of 256-bit Advanced
Encryption Standard (256-AES), the current security adopted
standard. Hardware architectures of LED for encrypting
transmitted data are explored with insights on implementation
of Galois multiplication into FPGA. In addition to provide a
bump-in wire encryption, the proposed approach can be
applied for Internet of Things (IoT).

Index Terms— Lightweight cryptography; Securing
SCADA; Lightweight Encryption Device; Field Programmable
Logic Arrays; Galois field

I. INTRODUCTION

Industrial Control Systems (ICSs) are considered as one
of the most important types of Critical National Information
Infrastructures (CNII) [1]. This is due to the fact that these
systems are the backbones of many national infrastructures
such as electricity generation, distribution and transmission.
One of the most common examples of ICS is the
Supervisory Control and Data Acquisition (SCADA)
system. SCADA is considered as an event driven cyber
physical system, encompasses centralized network with
remotely located substations [2]. As of ICS, a typical
SCADA system incorporates three main components: a
control center, remote substations and communication
networks that link all substations to the control center [3].
SCADA’s control center is responsible for managing and
supervising the overall system, processes and stores
acquired information in addition to, in some cases, serves as
a gateway to the corporate networks, which supports
business operations. Due to the critical roles provided by the

control center, any downtime or compromise of its processes
can lead to disastrous consequences to the economy, public
wellbeing and national security [4].

Prior to the Internet connectivity revolution in
ICS/SCADA domain and cloud-based ICS/SCADA
applications, SCADA systems were relatively isolated from
other networks and external access [6]. Additionally,
proprietary communication protocols and industrial devices
were used which promote the security-by-obscurity concept.
Therefore, cyber-security was never a key issue
consideration; rather the issues were about developing a
reliable, real-time and safe industrial control system.
Nonetheless, today's technological trends and the advent of
real-time information sharing and analysis have paved way
for internetworking capabilities of the enterprise and
business networks with the SCADA systems [6], [7]. This
interconnectivity allows for more efficient remote control,
management, and monitoring of industrial processes within
the supervised system. The downside to this integration is
that a large number of security threats have been introduced
to the industrial domain.

In near future, electric vehicles can participate in the
electrical grid frequency regulation. Such a scenario
anticipates grids to be more intelligent, and sharing of
communication networks with the public. Future energy
system will be distributed compared to the present, such as a
home energy system with photo-voltaic and inverters can be
remotely controlled via Internet. Also Internet of Things
(IoT) will be pervasive.

 The future trend of grids with interconnected
innumerable of IoT and other networks demands security
measures to avoid cyber-attacks. Security measure to
overcome cyber-attacks include authentication, encryption
and integrity checks. Encryption is a process of converting a
message or plaintext into an encrypted text. The encrypted
message is supposedly able to be decoded only by the
intended parties with a decryption key. The plaintext is
encrypted using an encryption or a cipher algorithm with an
encryption key. The process produces cipher-text that can
only viewed in its original form if decrypted with the correct
key. Examples of encryption algorithms are Advanced
Encryption Standard 256-bit (AES-256), PRESENT,
Lightweight Encryption Devices (LED) and PRINCE.

Implementing cipher system that support encryption and
others on hardware on a single semiconductor chip such as

���������	

�	��
�����������	����
��������� !�"�#�$��%��������&�������'�������

()�*�*" �+*+ �,*�-��-. �/���0�����	

 ���

Authorized licensed use limited to: UNIVERSITY TENAGA NASIONAL. Downloaded on July 06,2020 at 03:39:16 UTC from IEEE Xplore. Restrictions apply.

Field Programmable Logic Arrays (FPGA) is to reduce both
the computation time and energy consumption. The
lightweight version cryptography algorithms have
mathematical transforms that suitable for implementation on
hardware. Different architectures of implementing LED on
FPGA can be adopted to achieve contradicting constraints
such as area size versus throughput. As an example to
achieve smallest footprint of LED, authors in [21] had
implemented the serial architecture that message is
processed in 4-bit a time sequentially.

 The rest of the paper is organized as follows: Section II
reviews earlier research on securing SCADA, while Section
III introduces lightweight block cipher cryptography, and
LED algorithm is described in Section IV. Section V
describes hardware architecture of LED with experimental
results is in Section VI. Section VII concludes this paper.

II. SCADA TELE-CONTROL

A. Tele-control Data Links Protocol

An open standard protocol for SCADA tele-control
information exchange over serial communication is defined
by IEC 60870-5-101 protocol. The protocol architecture is
defined by three OSI Reference Model layers: the
Application Layer, the Data Link Layer and the Physical
Layer. The Application Service Data Unit (ASDU) message
is encapsulated inside the Data Link Layer frame or Link
Protocol Data Unit (LPDU). The proposed implementation
in this project is to encryption/decryption all data packets at
the data link layer. One cipher is to be installed at each
communication node, where encryption of packets receive
from near node and decryption of packets coming from
remote node.

B. Tele-control Encryption and Authentication

International standards bodies, such as Distributed
Network Protocol (DNP) [11] and IEC which govern
development of SCADA communication protocols have
specified secure authentication extensions to their protocols.
It has been proven that the strength of security correlates to
the length of cryptographic keys. Longer keys yields better
security due to higher processing complexity. However, the
standards also caution users against using cryptography in
time-sensitive SCADA networks due to low computational
and low data rate capabilities of the devices.

Several researchers have proposed secure encryption for
SCADA data transmission. Liu et al [12] proposed SEDEA
a dynamic key generation method based on the underlying
power system state estimator measurements. The encryption
key varies synchronously with the power system dynamics
and the key can be calculated in each remote terminal unit
(RTU) of SCADA nodes.

Hadley et al [13] reported on the testing of the Secure
SCADA Communication Protocol (SSCP).Their work was
commercialized and incorporated as SEL-3241 products for
serial cryptographic protection device. The SEL product is
certified FIPS 140-3 Level 2. Tsang et al [14] published on
low-latency a bump-in-the-wire cryptographic mechanism
for SCADA protocols called YASIR that incorporates
message prediction. Their solution guarantees data
authenticity and freshness, and achieves low latency.

However, the work did not specifically discuss YASIR’s
application to IEC 60870-5. Smith described cyber-threats
to SCADA systems [15].

Earlier research on SCADA data security have not
incorporated lightweight cryptography to meet time
sensitive issue. In order to meet timeliness constraints of
existing substation SCADA equipment, this work proposes
lightweight cipher system hosted on a single hardware chip.
Lightweight cryptography algorithms with less key-length
and transforms that suit hardware implementation should
able to meet execution time and small area footprint
requirements.

III. LIGHTWEIGHT BLOCK CIPHERS

Lightweight block cipher is recent cryptography
algorithms invented for devices that have limited computing
power and power sources. The design criteria for
lightweight cryptography are trade-off between security,
hardware footprint, cost and performance.

The need for lightweight version algorithms has triggered
invention of various ciphers such as PRESENT [20],
PHOTON [21], LED [22], HIGHT [23], KLEIN [24],
KATAN [25], SEA [26], TWINE [27] and LBlock [28]. In
general, there are several critical aspects need to be
considered in designing a block cipher, which include the
round numbers, key scheduling scheme and encryption
function [28]. LED is chosen for prototyping as without key
scheduling, it is considered as ultra-lightweight, yet has
security level comparable to 256 bit Advanced Encryption
Standard (AES-256), the industry adopted encryption
algorithm.

IV. LIGHTWEIGHT ENCRYPTION DEVICES

Light Encryption Device (LED) is one of the recent
substitution-permutation network (SPN) lightweight block
cipher, invented for small hardware footprint. The LED
block cipher was conceived by Guo et al. [22] with 64-bit
blocks of plain-text with variable key length of 64, 80, to
128-bit, to produce 64-bit cipher-text blocks.

Though LED is lightweight with short key length, and
without key scheduling, it has sufficient security level, had
been analyzed comparable to that of the 256-bit Advanced
Encryption Standard (AES) previously [22, 28, 29, and 30].

A. LED Encryption

The block diagram for LED encryption is shown in Figure
1, that plain-text (PT) is processed in blocks of 64-bit with
64-bit key inputs to produce 64-bit cipher-text (CT) output
blocks.

The first operation within LED is 64-bit addRoundKey
(ak) operation between PT and sub key (SKi). The ith is for
the number of round computation.

Following the first addRoundKey operation is round
computation known as step, and then combination of
addRoundKey and step is repeated (s-1) times. The value of
s is either 8 or 12 for LED-64 and LED-128 respectively.
The final operation is addRoundKey to produce a 64-bit
cipher-text (CT) block.

���������	

�	��
�����������	����
��������� !�"�#�$��%��������&�������'�������

���

Authorized licensed use limited to: UNIVERSITY TENAGA NASIONAL. Downloaded on July 06,2020 at 03:39:16 UTC from IEEE Xplore. Restrictions apply.

Manuscript Title

Step0
4 rounds

SK0
SK(K+1)

CTPT

SK1

Step1
4 rounds

Stepk
4 rounds akakak

Figure 1: LED (Encryption) Block Diagram

Each step has four rounds that each round consists of four
transforms named as Add-Constants (AC), Substitute-Cells
(SC), Shift-Rows (SR) and Mix-Columns-Serial (MCS). For
each of four rounds, different round constant (rcx) are
required by the AC as illustrated in Figure 2.

AC SC SR MCS

rcx

Figure 2: Each round requires different constant

For LED-64 encryption, the total step is eight (s = 8) with
nine addRoundKey operations. As within each step there are
four identical round transformations, therefore total round
computation is 32. As the number of step for LED-128 is
twelve, its number of round is 48. Therefore LED-128
requires 48 round constants.

B. AddRoundKey (ak)

As mentioned previously, Add-Key is 64-bit exclusive-or
operation between the 64-bit PT block with 64-bit sub-key
SKi, that ith indicates at which round. For LED-64, the SKi;

sub-keys as the as the following [17]:

Where k1 , k2 , … . k15 are to represent a value of a chosen
key. For LED-64, the sub-key for every round is the same,
the same secret value.

For LED-128, the sub-keys SKi for different rounds,
KeyOdd and KeyEven are applied alternately to the
addRoundKey. The alternate keys are as the following [17]:

The KeyEven and KeyOdd are derived as the following:

 SKi(j) = k(j + i *16 mod L);
Where

L is number of nibble = 16,
 j is position in the matrix.
All k(j) within each matrix to represent the secret
or chosen key

C. Round Computation

The plain-text message PT of 64-bit or arrange as sixteen
4-bit nibbles block: m0|| m1 || m2 ….. m14|| m15 is converted
to a matrix with sixteen elements that each element is 4-bit
nibble as the following format:

This plain-text matrix is considered as an initial cipher
state. The initial state is then fed to LED for transformation
of steps after the addRoundKey operation. For LED64, there
will 8 steps and 9 addRoundKey operations with sequential
programming code in Table 1.

As mentioned previously for LED-64, the sub-keys for
the addRoundKey is constant, equals to (64)10 = (40)16,
while add-constant changes every round.

Table 1: LED64 Encryption Pseudo Code

s = 8 --- for LED64
state= convert(PlainText64-to-4x4Matrix) -- initial state

for i = 0 to (s-1) do {

state = addRoundKey(state, SKi)

for j = 0 to 3 do { -- one step = 4 rounds
state = AC (state, rc (i, j))
state = SC (state)
state = SR (state)
state = MCS(state)
};

}; -- total 8 steps

state = addRoundKey(state, SK8)

CipherText64 = 4x4matrix-to-array(state)

D. Add Constant (AC)

The operation within AC is exclusive-OR operation of
first two columns of matrix with round-dependent constants
called as round constant () as given below [17]:

For every round, the round constant of 6-bit lengths is
shifted to the left by one position with the least significant
bit, is being feedback with a function of

. The values of are represented in bytes.

���������	

�	��
�����������	����
��������� !�"�#�$��%��������&�������'�������

���

Authorized licensed use limited to: UNIVERSITY TENAGA NASIONAL. Downloaded on July 06,2020 at 03:39:16 UTC from IEEE Xplore. Restrictions apply.

For LED-64 that has a total 32 rounds of computation
require 32 round constants. The value of
is an 8 bits key size representation, with being the least
significant bit (LSB). The round constants generated by a
Linear Feedback Shift Register (LFSR).

E. Substitution Cell (AC)
Each nibble element of the matrix is replaced by the

nibble produced by a table called S-Box. Parts of S-Box for
LED is given in Table II (x is replaced by S(x)), is similar to
that of PRESENT cipher [14]. The SubCells is to minimize
the correlation between input and output.

Table 2: Substitute-Cell [20]

x 0 1 2 3 4 5 6 7
S(x) C 5 6 B 9 0 A D

F. Shift Rows (SR)

Shift Rows operates on the rows of the matrix or
state, is similar to shift operation that of earlier
developed encryption known as AES. The nibble of
every row is rotated to the left by ith position, for
i=0,1,2, and 3.

G. Mix-Columns Serial (MCS)

Mix-Column-Serial function takes each column
vector of the array state and update with the new
column vector after multiplying the vector by a
fixed constant matrix M, the Maximum Distance
Separable (MDS) [17]. The arithmetic employed for
this MCS operation is finite field arithmetic known
as Galois Field (GF) with an irreducible polynomial
of x4+x+1.

For MCS, the finite field is GF (24) with
irreducible polynomial of x4+x+1. Definition for
GF (pn) is its elements represented as polynomials
with degree less than n, where p is a prime number,
and n is positive integer. For mathematical
operation such as multiplication, typical
multiplication of integer then followed reduction by
modulo p or compute reminder of modulo R, where
R is an irreducible polynomial. The implementation
of multiplication in finite field of Galois on FPGA
will be presented in the next section namely the
hardware architecture.

V. LED HARDWARE ARCHITECTURES

Choices of hardware architectures to realized LED into
hardware include pipelining and serial. The following
subsections describe options of architecture available and
details hardware implementation of LED’s round
computations.

A. LED-64 Hardware Architectures

Serial architecture of LED as mentioned in [21], being
smallest footprint that process message sequentially requires
high number of clock cycles. The totals clock cycle are 1248
(39 cycles per round computation) and 1872 for LED-64 and
LED-128 respectively.

Alternatively, one can implement one round computation
as a component that transforms the LED states repeatedly.
Therefore for LED-64, the 32 round computations require
32 clock cycles, starting with plain-text as initial state input.
For this architecture, additional components are a 64-bit
register, state machine and a component that selects the
round constants. Other approach is using pipeline
architecture such as in [31].

To reduce clock cycle, one can implement the whole 32
round computations of LED-64 encryption as a
combinational logic within an FPGA. This type of
implementation consisted of 32 components of each
addRoundKey, AddConstant, Substitute Cell, ShiftRow and
MixColumnSerial.

In this project, combinational logic architecture has
been chosen to achieve the least execution time. All
components have been coded in hardware descriptive
language (HDL). The snippet of VHDL code for the step
with AddRoundKey (AddRndKey), and each step
“instantiation” of OneStep is as shown in Table 3.

Table 3: Snippet of HDL Code for LED-64

AddRndKey1: PT0 <= Key64 xor PlainText;
step1 : Entity work.OneStep port map (0, PT0, CT0);

AddRndKey2: PT1 <= Key64 xor CT0;
step2 : Entity work.OneStep port map (1, PT1, CT1);
……
AddRndKey7: PT6 <= Key64 xor CT6;
step7 : Entity work.OneStep port map (1, PT6, CT6);

OneStep performs four rounds of transformation that each
round has AC, SC, SR and MCS component. As each step
has four round computation, there are four components of
AC, SC, SR and MCS respectively within the OneStep.
Therefore total component let say for AC is 32.The final
state is converted back to 64-bit format, to become the
cipher-text.

B. Mix Column Serial Architecture

���������	

�	��
�����������	����
��������� !�"�#�$��%��������&�������'�������

��

Authorized licensed use limited to: UNIVERSITY TENAGA NASIONAL. Downloaded on July 06,2020 at 03:39:16 UTC from IEEE Xplore. Restrictions apply.

Manuscript Title

The mix-column serial operation of LED is basically
multiplication of two matrices (each element is 4-bit nibble)
as the following:

Matrix MDS multiply to nibbles S0, S1, S2, and so on
until S15. The result of multiplication is represented T0, T1
and so on. For each element let say T0 should require four
multiplications of two 4-bit operands.

Table 4: Snippet of HDL Code for Matrix GF (24) Multiplication

--GF: Multiplication & Reduction to Produce 4-bit result

M : std_logic_vector(3 downto 0); -- MDS matrix element
S : std_logic_vector(3 downto 0); -- State matrix element
……..

--POLY = X4 + X + 1
poly : std_logic_vector(4 downto 0) := “10011”;
….……

-- MULTIPLICATION res <= M x S;
res(0) <= M(0) and PT(0);
res(1) <= (M(1) and PT(0)) xor ((M(0) AND PT(1));
…………………..
res(6) <= M(3) and PT(3);
…………………….

-- CHECKING BIT 6 if magnitude greater than POLY
………..

-- CHECKING BIT 5 if magnitude greater than POLY
…………….

-- CHECKING BIT 4 if magnitude greater than POLY

T <= …. ; -- irreducible result

For each multiplication of two 4-bit operands,
conventional multiplication of 4-bit operation with division
by polynomial X4+X+1 to produce irreducible result within
the Galois field values are required. However, rather than
performing multiplications, AND with EXCLUSIVE-OR
operations have been used to produce product res(0), res(1),
res(2), ….. res(6). Similarly, instead of performing division
to reduce multiplication product to 4-bit, res(6) is checked if
equal to logic ‘1’, if so, EXCLUSIVE-OR with “1001100”
is performed to produce new result. Subsequently bit 5 of
new result is checked equal to logic ‘1’, if true, perform
EXCLUSIVE-OR with “010010”, to produce latest result,
and so on for bit 4 of latest result. Subsequently, the finite
product is derived from 4-bit of bit 4 manipulation result.
The HDL code for described logical operations to realize

multiplication and division to reduce result to 4 bit Galois
field finite value is listed in Table 4. Summation of products
using exclusive-or operations yield the T(i), where i is 0,1,2,
…..15.

VI. EXPERIMENTAL RESULTS

A. Correctness Test

LED-64 encryption has been implemented on Spartan-6
SP601 XC6SLX16-2CSG324 FPGA. Two test vectors (64-
bit plaintext and 64-bit key), to evaluate LED encryption
correctness, has produced the following cipher texts.

Plaintext1 (PT): x"0000_0000_0000_0000"
Key: x"0000_0000_0000_0000"
Ciphertext1 (CT): x"897C_0A30_0104_2C93"

Plaintext2 (PT): x"FEDC_BA98_7654_3210"
Key: x"FEDC_BA98_7654_3210"
Ciphertext2 (CT): x"85CF_3983_E155_300A"

The correctness has been validated by two methods:
simulation test and also downloading onto an FPGA on an
evaluation board for observe encrypted text on a display.

B. Synthesis Report

The synthesis report of LED encryption module is as
shown in Table 5. The number of look-up-table (LUT) is 96
out of 9,112, which is only one percent of total LUT on
SPARTAN 6.

Table 5: LED-64 Encryption Synthesis Report

Device Spartan-6
XC6SLX16-2CSG324

Number of Slice Registers 104 out of 18,224
Number of Slice LUTs 96 out of 9,112
Number used as logic 95 out of 9,112
Number of LUT Flip-Flop 99
Maximum Frequency 266.238MHz

Though the biggest footprint architecture has been
selected for implementation, the number of FPGA resources
used such as LUT is 96 out 9,112 slices (1.05% of
SPARTAN-6). Such low footprint allows the FPGA to host
others such as processors for IoT.

C. LED-64 Cipher System for SCADA IEC101 Data

Figure 5 illustrates the LED-64 with two asynchronous
receive-and-transmits, two buffers and a controller that have
been realized on SPARTAN 3E FPGA. The set-up is to
evaluate LED-64 as a crypto-system to encryption/decrypt
serial data streams, as an initial prototype. The buffers are
for data buffering that to adapt data throughput and data-
width between serial and crypto-algorithm processing. Each
buffer has two clock sources; one is the system clock
(sys_clk) and the other is clock generated by the UART
(uart_clk). The uart_clk has frequency multiple of serial data
baud rates to synchronize data movement in/out of buffers.

The controller is to detect data availability in the buffers,
to initiate an encryption process, and also to check

���������	

�	��
�����������	����
��������� !�"�#�$��%��������&�������'�������

��,

Authorized licensed use limited to: UNIVERSITY TENAGA NASIONAL. Downloaded on July 06,2020 at 03:39:16 UTC from IEEE Xplore. Restrictions apply.

completion of encryption.

BufferUART UARTBuffer

Controller

LED64

sys_clk

sys_clk

uart_clk uart_clk

Figure 3: LED-64 Cipher System

The baud rate for serial communication can be adjusted to
9600 to 115K. Samples of SCADA payload (of IEC 60870-
5-101) for encryption are tabulated in Table 6.

Table 6: Samples Payload Encrypted/Decrypted

APDU type Function
(Control/Monitor)

APDU
Length

Payload

U-format Start data transfer 4 68 04 07 00 00 00
U-format Test (control) 4 68 04 43 00 00 00
U-format Test (monitor) 4 68 04 83 00 00 00
I-format Command 14 68 0e 1a 00 ……
I-format Value short float 250 68 fa 00 …….

VII. CONCLUSION

Related research on the need to securing SCADA data
and revision of lightweight encryption devices (LED)
algorithm provide background for this project. Several
architectures of LED implementation into hardware have
been reviewed, and followed by a detail design of
components within LED on FPGA. In this project, hosting a
complete LED-based cipher system on a single FPGA offers
a low-cost security device for legacy SCADA, while able to
meet timelines requirement. Evaluation of a selected cipher,
LED in this case, has been successfully implemented on a
low-cost FPGA to encrypt tele-control data packets. The
size of synthesized LED-64 algorithm requires merely one
percent of low cost FPGA resources (SPARTAN 6), and yet
able to process data packets at 266MHz.

ACKNOWLEDGMENT

The authors would like to extend their gratitude to
Ministry of Higher Education Malaysia (MOHE) for their
FRGS grant no: FRGS/1/2015/ICT06/UNITEN/02/1.

REFERENCES

[1] C. Alcaraz and S. Zeadally, “Critical infrastructure protection:
Requirements and challenges for the 21st century,” Int. J. Crit.
Infrastruct. Prot., vol. 8, pp. 53–66, Jan. 2015.

[2] L. A. Maglaras et al., “Cyber security of critical infrastructures,” ICT
Express, vol. 4, no. 1, pp. 42–45, Mar. 2018.

[3] B. Miller and D. Rowe, “A survey SCADA of and critical
infrastructure incidents,” in Proceedings of the 1st Annual conference
on Research in information technology - RIIT ’12, 2012, p. 51.

[4] S. Nazir, S. Patel, and D. Patel, “Assessing and augmenting SCADA
cyber security: A survey of techniques,” Computer. Security. vol. 70,
pp. 436–454, Sep. 2017.

[5] R. S. Ramachandruni and P. Poornachandran, “Detecting the network
attack vectors on SCADA systems,” 2015 Int. Conf. Adv. Computer
Communication Informatics, ICACCI 2015, pp. 707–712, 2015.

[6] U. P. D. Ani, H. (Mary) He, and A. Tiwari, “Review of cybersecurity
issues in Industrial Critical Infrastructures: Manufacturing in
perspective,” J. Cyber Secur. Technol., vol. 1, no. 1, pp. 32–74, Jan.
2017.

[7] M. Krotofil and D. Gollmann, “Industrial control systems security:
What is happening?,” in 2013 11th IEEE International Conference on
Industrial Informatics (INDIN), 2013, pp. 664–669.

[8] R. Tawde, A. Nivangune, and M. Sankhe, “Cyber security in smart
grid SCADA automation systems,” in 2015 International Conference
on Innovations in Information, Embedded and Communication
Systems (ICIIECS), 2015, pp. 1–5.

[9] W. Knowles, D. Prince, D. Hutchison, J. F. P. Disso, and K. Jones,
“A survey of cyber security management in industrial control
systems,” Int. J. Crit. Infrastruct. Prot., vol. 9, pp. 52–80, Jun. 2015.

[10] Wei Gao, T. Morris, B. Reaves, and D. Richey, “On SCADA control
system command and response injection and intrusion detection,” in
2010 eCrime Researchers Summit, 2010, pp. 1–9.

[11] Gilchrist, G. (2008, July). Secure authentication for DNP3. In Power
and Energy Society General Meeting-Conversion and Delivery of
Electrical Energy in the 21st Century, 2008 IEEE (pp. 1-3). IEEE
Chicago

[12] Liu, T., Tian, J., Gui, Y., Liu, Y., & Liu, P. (2017). “SEDEA: State
Estimation-Based Dynamic Encryption and Authentication in Smart
Grid”. IEEE Access, 5, 15682-15693.

[13] Hadley, M. D., Huston, K. A., & Edgar, T. W. (2007). AGA-12, Part
2 Performance Test Results. Pacific Northwest National Laboratories.
Chicago

[14] Tsang, Patrick P., and Sean W. Smith. "YASIR: A low-latency, high-
integrity security retrofit for legacy SCADA systems." IFIP
International Information Security Conference. Springer, Boston,
MA, 2008.

[15] Security for Critical Infrastructure SCADA Systems, SANS Institute,
A. H. Smith, Feb 2005.

[16] IEC 60870-5-101:2003, “Telecontrol Equipment and Systems – Part
5-101: Transmission protocols – Companion standard for basic
telecontrol tasks”

[17] IEC 62351-5:2009, “Power system management and associated
information exchange – Data and communication security – Part 5:
Security for IEC 60870-5 and derivatives

[18] M. Mozaffari-Kermani, K. Tian, R. Azarderakhsh, and S. Bayat-
Sarmadi, “Fault-resilient lightweight cryptographic block ciphers for
secure embedded systems,” IEEE Embed. Syst. Lett., vol. 6, no. 4, pp.
89–92, 2014.

[19] A. Bogdanov et al., “PRESENT: An Ultra-Lightweight Block
Cipher,” Cryptogr. Hardw. Embed. Syst. - CHES 2007, pp. 450–466,
2007.

[20] J. Guo, T. Peyrin, and A. Poschmann, “The PHOTON Lightweight
Hash Functions Family,” Crypto, pp. 222–239, 2000.

[21] J. Guo, T. Peyrin, A. Poschmann, and M. Robshaw, “The LED block
cipher,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes
Artif. Intell. Lect. Notes Bioinformatics), vol. 6917 LNCS, pp. 326–
341, 2011.

[22] D. Hong et al., “HIGHT: A New Block Cipher Suitable for Low-
Resource Device,” Cryptography Hardware Embed. Syst. CHES
2006, Springer, LNCS, vol. 4249, pp. 46–59, 2006.

[23] Z. Gong, S. Nikova, and Y. W. Law, “KLEIN: A New Family of
Lightweight Block Ciphers,” pp. 1–18, 2012.

[24] C. De Cannière, O. Dunkelman, and M. Knežević, “KATAN and
KTANTAN - A family of small and efficient hardware-oriented block
ciphers,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes
Artif. Intell. Lect. Notes Bioinformatics), vol. 5747 LNCS, pp. 272–
288, 2009.

[25] G. Piret and N. Gershenfeld, “SEA for internet-0 : a Scalable
Encryption Algorithm for Small Embedded Applications why we
need crypto for internet-0,” pp. 222–236.

[26] T. Suzaki, K. Minematsu, S. Morioka, and E. Kobayashi, “TWINE :
A Lightweight Block Cipher,” no. 1, pp. 339–354, 2013.

[27] W. Wu and L. Zhang, “LBlock: A Lightweight Block Cipher,” pp.
327–344, 2011.

[28] S. Salim, M. Aldabbagh, and I. Al, “Lightweight Block Ciphers : a
Comparative Study,” vol. 2, no. 4, pp. 159–165, 2012.

[29] M. Fujishiro, M. Yanagisawa, and N. Togawa, “Scan-based Attack on
the LED Block Cipher Using Scan Signatures,” pp. 1460–1463, 2014.

[30] W. Li et al., “Impossible Differential Fault Analysis on the LED
Lightweight Cryptosystem in the Vehicular Ad-Hoc Networks,” IEEE
Trans. Dependable Secur. Comput., vol. 13, no. 1, pp. 84–92, 2016.

[31] P. F. R. Sofia, T. B. Sheeba, and E. M. K. Engineering, “Efficient
Implementation of (LED) Light Encryption Device Using Pipeline
Architecture,” vol. 24, pp. 173–176, 2016

���������	

�	��
�����������	����
��������� !�"�#�$��%��������&�������'�������

��"

Authorized licensed use limited to: UNIVERSITY TENAGA NASIONAL. Downloaded on July 06,2020 at 03:39:16 UTC from IEEE Xplore. Restrictions apply.

