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Abstract- Financial and lives lost are possible consequences 
when disruption of an electricity supply occurs, due to security 
breaching of an industrial control system (ICS). Enhancing 
security of a geographical-wide ICS such as supervisory 
control and data acquisition (SCADA) system will require 
considerable efforts and capital. In addition to cost, system 
time sensitivity is also a major issue when one wants to 
implement security schemes at the existing SCADA. In 
addition to introduction on the need to secure SCADA, this 
paper is to focus on encryption for SCADA that are already in 
operation. Selecting a lightweight cipher such as lightweight 
encryption devices (LED) with its mathematical algorithms 
that suits hardware implementation, allows a complete cipher 
system to be hosted on a single low-cost FPGA, while satisfying 
time-latency of encrypting/decrypting of SCADA data packets. 
Though LED has no key scheduling and small key length, its 
security level is comparable to that of 256-bit Advanced 
Encryption Standard (256-AES), the current security adopted 
standard. Hardware architectures of LED for encrypting 
transmitted data are explored with insights on implementation 
of Galois multiplication into FPGA. In addition to provide a
bump-in wire encryption, the proposed approach can be 
applied for Internet of Things (IoT). 

Index Terms— Lightweight cryptography; Securing 
SCADA; Lightweight Encryption Device; Field Programmable 
Logic Arrays; Galois field 

I. INTRODUCTION

Industrial Control Systems (ICSs) are considered as one 
of the most important types of Critical National Information 
Infrastructures (CNII) [1]. This is due to the fact that these 
systems are the backbones of many national infrastructures 
such as electricity generation, distribution and transmission.
One of the most common examples of ICS is the 
Supervisory Control and Data Acquisition (SCADA) 
system. SCADA is considered as an event driven cyber 
physical system, encompasses centralized network with 
remotely located substations [2]. As of ICS, a typical 
SCADA system incorporates three main components: a 
control center, remote substations and communication 
networks that link all substations to the control center [3]. 
SCADA’s control center is responsible for managing and 
supervising the overall system, processes and stores 
acquired information in addition to, in some cases, serves as 
a gateway to the corporate networks, which supports 
business operations. Due to the critical roles provided by the 

control center, any downtime or compromise of its processes 
can lead to disastrous consequences to the economy, public 
wellbeing and national security [4].

Prior to the Internet connectivity revolution in 
ICS/SCADA domain and cloud-based ICS/SCADA 
applications, SCADA systems were relatively isolated from 
other networks and external access [6]. Additionally, 
proprietary communication protocols and industrial devices 
were used which promote the security-by-obscurity concept. 
Therefore, cyber-security was never a key issue 
consideration; rather the issues were about developing a 
reliable, real-time and safe industrial control system. 
Nonetheless, today's technological trends and the advent of 
real-time information sharing and analysis have paved way 
for internetworking capabilities of the enterprise and 
business networks with the SCADA systems [6], [7]. This 
interconnectivity allows for more efficient remote control, 
management, and monitoring of industrial processes within 
the supervised system. The downside to this integration is 
that a large number of security threats have been introduced 
to the industrial domain. 

In near future, electric vehicles can participate in the 
electrical grid frequency regulation. Such a scenario 
anticipates grids to be more intelligent, and sharing of 
communication networks with the public. Future energy 
system will be distributed compared to the present, such as a 
home energy system with photo-voltaic and inverters can be 
remotely controlled via Internet. Also Internet of Things 
(IoT) will be pervasive. 

  The future trend of grids with interconnected 
innumerable of IoT and other networks demands security 
measures to avoid cyber-attacks. Security measure to 
overcome cyber-attacks include authentication, encryption 
and integrity checks. Encryption is a process of converting a 
message or plaintext into an encrypted text. The encrypted 
message is supposedly able to be decoded only by the 
intended parties with a decryption key. The plaintext is 
encrypted using an encryption or a cipher algorithm with an 
encryption key. The process produces cipher-text that can 
only viewed in its original form if decrypted with the correct 
key. Examples of encryption algorithms are Advanced 
Encryption Standard 256-bit (AES-256), PRESENT, 
Lightweight Encryption Devices (LED) and PRINCE. 

Implementing cipher system that support encryption and 
others on hardware on a single semiconductor chip such as 
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Field Programmable Logic Arrays (FPGA) is to reduce both 
the computation time and energy consumption. The 
lightweight version cryptography algorithms have 
mathematical transforms that suitable for implementation on 
hardware. Different architectures of implementing LED on 
FPGA can be adopted to achieve contradicting constraints 
such as area size versus throughput. As an example to
achieve smallest footprint of LED, authors in [21] had 
implemented the serial architecture that message is 
processed in 4-bit a time sequentially. 

 The rest of the paper is organized as follows: Section II 
reviews earlier research on securing SCADA, while Section 
III introduces lightweight block cipher cryptography, and 
LED algorithm is described in Section IV. Section V
describes hardware architecture of LED with experimental 
results is in Section VI. Section VII concludes this paper. 

II. SCADA TELE-CONTROL

A. Tele-control Data Links Protocol 

An open standard protocol for SCADA tele-control 
information exchange over serial communication is defined 
by IEC 60870-5-101 protocol. The protocol architecture is 
defined by three OSI Reference Model layers: the 
Application Layer, the Data Link Layer and the Physical 
Layer. The Application Service Data Unit (ASDU) message 
is encapsulated inside the Data Link Layer frame or Link 
Protocol Data Unit (LPDU). The proposed implementation 
in this project is to encryption/decryption all data packets at 
the data link layer. One cipher is to be installed at each 
communication node, where encryption of packets receive 
from near node and decryption of packets coming from 
remote node.   

B. Tele-control Encryption and Authentication 

International standards bodies, such as Distributed 
Network Protocol (DNP) [11] and IEC which govern 
development of SCADA communication protocols have 
specified secure authentication extensions to their protocols. 
It has been proven that the strength of security correlates to 
the length of cryptographic keys. Longer keys yields better 
security due to higher processing complexity.  However, the 
standards also caution users against using cryptography in 
time-sensitive SCADA networks due to low computational 
and low data rate capabilities of the devices.  

Several researchers have proposed secure encryption for 
SCADA data transmission. Liu et al [12] proposed SEDEA 
a dynamic key generation method based on the underlying 
power system state estimator measurements. The encryption 
key varies synchronously with the power system dynamics 
and the key can be calculated in each remote terminal unit 
(RTU) of SCADA nodes. 

Hadley et al [13] reported on the testing of the Secure 
SCADA Communication Protocol (SSCP).Their work was 
commercialized and incorporated as SEL-3241 products for 
serial cryptographic protection device. The SEL product is 
certified FIPS 140-3 Level 2. Tsang et al [14] published on 
low-latency a bump-in-the-wire cryptographic mechanism 
for SCADA protocols called YASIR that incorporates 
message prediction. Their solution guarantees data 
authenticity and freshness, and achieves low latency.

However, the work did not specifically discuss YASIR’s 
application to IEC 60870-5. Smith described cyber-threats 
to SCADA systems [15]. 

Earlier research on SCADA data security have not 
incorporated lightweight cryptography to meet time 
sensitive issue. In order to meet timeliness constraints of 
existing substation SCADA equipment, this work proposes 
lightweight cipher system hosted on a single hardware chip. 
Lightweight cryptography algorithms with less key-length 
and transforms that suit hardware implementation should 
able to meet execution time and small area footprint 
requirements.  

III. LIGHTWEIGHT BLOCK CIPHERS

Lightweight block cipher is recent cryptography 
algorithms invented for devices that have limited computing 
power and power sources. The design criteria for 
lightweight cryptography are trade-off between security, 
hardware footprint, cost and performance.  

The need for lightweight version algorithms has triggered 
invention of various ciphers such as PRESENT [20], 
PHOTON [21], LED [22], HIGHT [23], KLEIN [24], 
KATAN [25], SEA [26], TWINE [27] and LBlock [28]. In 
general, there are several critical aspects need to be 
considered in designing a block cipher, which include the 
round numbers, key scheduling scheme and encryption 
function [28]. LED is chosen for prototyping as without key 
scheduling, it is considered as ultra-lightweight, yet has 
security level comparable to 256 bit Advanced Encryption 
Standard (AES-256), the industry adopted encryption 
algorithm. 

IV. LIGHTWEIGHT ENCRYPTION DEVICES

Light Encryption Device (LED) is one of the recent 
substitution-permutation network (SPN) lightweight block 
cipher, invented for small hardware footprint. The LED 
block cipher was conceived by Guo et al. [22] with 64-bit 
blocks of plain-text with variable key length of 64, 80, to
128-bit, to produce 64-bit cipher-text blocks.

Though LED is lightweight with short key length, and 
without key scheduling, it has sufficient security level, had 
been analyzed comparable to that of the 256-bit Advanced 
Encryption Standard (AES) previously [22, 28, 29, and 30]. 

A. LED Encryption 

The block diagram for LED encryption is shown in Figure 
1, that plain-text (PT) is processed in blocks of 64-bit with 
64-bit key inputs to produce 64-bit cipher-text (CT) output 
blocks. 

The first operation within LED is 64-bit addRoundKey 
(ak) operation between PT and sub key (SKi). The ith is for
the number of round computation.  

Following the first addRoundKey operation is round 
computation known as step, and then combination of 
addRoundKey and step is repeated (s-1) times. The value of 
s is either 8 or 12 for LED-64 and LED-128 respectively. 
The final operation is addRoundKey to produce a 64-bit 
cipher-text (CT) block. 
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Step0
4 rounds

SK0
SK(K+1)

CTPT

SK1

Step1
4 rounds

Stepk
4 rounds akakak

Figure 1:  LED (Encryption) Block Diagram 

Each step has four rounds that each round consists of four 
transforms named as Add-Constants (AC), Substitute-Cells 
(SC), Shift-Rows (SR) and Mix-Columns-Serial (MCS). For 
each of four rounds, different round constant (rcx) are 
required by the AC as illustrated in Figure 2. 

AC SC SR MCS

rcx

Figure 2: Each round requires different constant 

For LED-64 encryption, the total step is eight (s = 8) with 
nine addRoundKey operations. As within each step there are 
four identical round transformations, therefore total round 
computation is 32. As the number of step for LED-128 is 
twelve, its number of round is 48. Therefore LED-128
requires 48 round constants. 

B. AddRoundKey (ak) 

As mentioned previously, Add-Key is 64-bit exclusive-or 
operation between the 64-bit PT block with 64-bit sub-key 
SKi, that ith indicates at which round. For LED-64, the SKi;

sub-keys as the as the following [17]: 

Where k1 , k2 , … . k15 are to represent a value of a chosen 
key. For LED-64, the sub-key for every round is the same, 
the same secret value. 

For LED-128, the sub-keys SKi for different rounds,
KeyOdd and KeyEven are applied alternately to the 
addRoundKey. The alternate keys are as the following [17]: 

The KeyEven and KeyOdd are derived as the following: 

 SKi(j) = k(j + i *16 mod L); 
Where 

L is number of nibble = 16,  
 j is position in the matrix. 
All k(j) within each matrix to represent the secret 
or chosen key 

C. Round Computation 

The plain-text message PT of 64-bit or arrange as sixteen 
4-bit nibbles block:  m0|| m1 || m2 ….. m14|| m15 is converted 
to a matrix with sixteen elements that each element is 4-bit 
nibble as the following format: 

This plain-text matrix is considered as an initial cipher 
state. The initial state is then fed to LED for transformation 
of steps after the addRoundKey operation. For LED64, there 
will 8 steps and 9 addRoundKey operations with sequential 
programming code in Table 1.  

As mentioned previously for LED-64, the sub-keys for 
the addRoundKey is constant, equals to (64)10 = (40)16,
while add-constant changes every round. 

Table 1:  LED64 Encryption Pseudo Code 

s = 8 --- for LED64   
state= convert(PlainText64-to-4x4Matrix) -- initial state

for i = 0 to (s-1) do {

state = addRoundKey(state, SKi)

for j = 0 to 3 do { -- one step = 4 rounds
state = AC (state, rc (i, j))
state = SC (state)
state = SR (state)
state = MCS(state)
};

}; -- total 8 steps

state = addRoundKey( state, SK8)

CipherText64 = 4x4matrix-to-array(state)  

D. Add Constant (AC) 

The operation within AC is exclusive-OR operation of 
first two columns of matrix with round-dependent constants 
called as round constant ( ) as given below [17]:

For every round, the round constant of 6-bit lengths is 
shifted to the left by one position with the least significant 
bit,  is being feedback with a function of

. The values of are represented in bytes.
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For LED-64 that has a total 32 rounds of computation 
require 32 round constants. The value of  
is an 8 bits key size representation, with being the least
significant bit (LSB). The round constants generated by a 
Linear Feedback Shift Register (LFSR). 

E. Substitution Cell (AC) 
Each nibble element of the matrix is replaced by the 

nibble produced by a table called S-Box. Parts of S-Box for 
LED is given in Table II (x is replaced by S(x)), is similar to 
that of PRESENT cipher [14]. The SubCells is to minimize 
the correlation between input and output. 

Table 2:   Substitute-Cell [20] 

x 0 1 2 3 4 5 6 7
S(x) C 5 6 B 9 0 A D

F. Shift Rows (SR)

Shift Rows operates on the rows of the matrix or 
state, is similar to shift operation that of earlier 
developed encryption known as AES. The nibble of 
every row is rotated to the left by ith position, for 
i=0,1,2, and 3.

G. Mix-Columns Serial (MCS)

Mix-Column-Serial function takes each column 
vector of the array state and update with the new 
column vector after multiplying the vector by a 
fixed constant matrix M, the Maximum Distance 
Separable (MDS) [17]. The arithmetic employed for 
this MCS operation is finite field arithmetic known 
as Galois Field (GF) with an irreducible polynomial 
of x4+x+1.

For MCS, the finite field is GF (24) with 
irreducible polynomial of x4+x+1. Definition for
GF (pn) is its elements represented as polynomials 
with degree less than n, where p is a prime number, 
and n is positive integer. For mathematical 
operation such as multiplication, typical 
multiplication of integer then followed reduction by 
modulo p or compute reminder of modulo R, where 
R is an irreducible polynomial. The implementation 
of multiplication in finite field of Galois on FPGA 
will be presented in the next section namely the 
hardware architecture.

V. LED HARDWARE ARCHITECTURES

Choices of hardware architectures to realized LED into 
hardware include pipelining and serial. The following 
subsections describe options of architecture available and 
details hardware implementation of LED’s round 
computations. 

A. LED-64 Hardware Architectures 

Serial architecture of LED as mentioned in [21], being 
smallest footprint that process message sequentially requires 
high number of clock cycles. The totals clock cycle are 1248
(39 cycles per round computation) and 1872 for LED-64 and 
LED-128 respectively.

Alternatively, one can implement one round computation 
as a component that transforms the LED states repeatedly.
Therefore for LED-64, the 32 round computations require 
32 clock cycles, starting with plain-text as initial state input. 
For this architecture, additional components are a 64-bit 
register, state machine and a component that selects the 
round constants. Other approach is using pipeline 
architecture such as in [31]. 

To reduce clock cycle, one can implement the whole 32 
round computations of LED-64 encryption as a 
combinational logic within an FPGA. This type of 
implementation consisted of 32 components of each 
addRoundKey, AddConstant, Substitute Cell, ShiftRow and 
MixColumnSerial. 

In this project, combinational logic architecture has 
been chosen to achieve the least execution time. All 
components have been coded in hardware descriptive 
language (HDL). The snippet of VHDL code for the step 
with AddRoundKey (AddRndKey), and each step 
“instantiation” of OneStep is as shown in Table 3. 

Table 3:   Snippet of HDL Code for LED-64

AddRndKey1: PT0 <= Key64 xor PlainText;
step1 : Entity work.OneStep port map (0, PT0, CT0);

AddRndKey2: PT1 <= Key64 xor CT0;
step2 : Entity work.OneStep port map (1, PT1, CT1);
……
AddRndKey7: PT6 <= Key64 xor CT6;
step7 : Entity work.OneStep port map (1, PT6, CT6);

OneStep performs four rounds of transformation that each 
round has AC, SC, SR and MCS component. As each step 
has four round computation, there are four components of 
AC, SC, SR and MCS respectively within the OneStep.
Therefore total component let say for AC is 32.The final 
state is converted back to 64-bit format, to become the 
cipher-text. 

B. Mix Column Serial Architecture 
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The mix-column serial operation of LED is basically 
multiplication of two matrices (each element is 4-bit nibble) 
as the following: 

Matrix MDS multiply to nibbles S0, S1, S2, and so on 
until S15. The result of multiplication is represented T0, T1 
and so on. For each element let say T0 should require four 
multiplications of two 4-bit operands. 

Table 4:  Snippet of HDL Code for Matrix GF (24) Multiplication 

--GF: Multiplication & Reduction to Produce 4-bit result

M : std_logic_vector(3 downto 0); -- MDS matrix element
S : std_logic_vector(3 downto 0); -- State matrix element
……..

--POLY = X4 + X + 1
poly  :  std_logic_vector(4 downto 0) := “10011”;
….……

-- MULTIPLICATION    res <= M x S;
res(0) <= M(0) and PT(0);
res(1) <= (M(1) and PT(0)) xor  ((M(0) AND PT(1));
…………………..
res(6) <= M(3) and PT(3);
…………………….

-- CHECKING BIT 6 if magnitude greater than POLY
………..

-- CHECKING BIT 5 if magnitude greater than POLY
…………….

-- CHECKING BIT 4 if magnitude greater than POLY

T <= ….    ; -- irreducible result

For each multiplication of two 4-bit operands, 
conventional multiplication of 4-bit operation with division 
by polynomial X4+X+1 to produce irreducible result within 
the Galois field values are required.  However, rather than 
performing multiplications, AND with EXCLUSIVE-OR 
operations have been used to produce product res(0), res(1), 
res(2), ….. res(6). Similarly, instead of performing division 
to reduce multiplication product to 4-bit, res(6) is checked if 
equal to logic ‘1’, if so, EXCLUSIVE-OR with “1001100” 
is performed to produce new result. Subsequently bit 5 of 
new result is checked equal to logic ‘1’, if true, perform 
EXCLUSIVE-OR with “010010”, to produce latest result, 
and so on for bit 4 of latest result. Subsequently, the finite 
product is derived from 4-bit of bit 4 manipulation result. 
The HDL code for described logical operations to realize 

multiplication and division to reduce result to 4 bit Galois 
field finite value is listed in Table 4. Summation of products 
using exclusive-or operations yield the T(i), where i is 0,1,2, 
…..15.

VI. EXPERIMENTAL RESULTS

A. Correctness Test 

LED-64 encryption has been implemented on Spartan-6
SP601 XC6SLX16-2CSG324 FPGA. Two test vectors (64-
bit plaintext and 64-bit key), to evaluate LED encryption 
correctness, has produced the following cipher texts. 

Plaintext1 (PT): x"0000_0000_0000_0000" 
Key: x"0000_0000_0000_0000" 
Ciphertext1 (CT): x"897C_0A30_0104_2C93" 

Plaintext2 (PT): x"FEDC_BA98_7654_3210" 
Key: x"FEDC_BA98_7654_3210" 
Ciphertext2 (CT): x"85CF_3983_E155_300A" 

The correctness has been validated by two methods: 
simulation test and also downloading onto an FPGA on an 
evaluation board for observe encrypted text on a display.

B. Synthesis Report 

The synthesis report of LED encryption module is as 
shown in Table 5. The number of look-up-table (LUT) is 96 
out of 9,112, which is only one percent of total LUT on 
SPARTAN 6. 

Table 5:   LED-64 Encryption Synthesis Report 

Device Spartan-6
XC6SLX16-2CSG324

Number of Slice Registers 104  out of  18,224 
Number of Slice LUTs 96 out of  9,112 
Number used as logic 95 out of   9,112    
Number of LUT Flip-Flop 99
Maximum Frequency 266.238MHz

Though the biggest footprint architecture has been 
selected for implementation, the number of FPGA resources 
used such as LUT is 96 out 9,112 slices (1.05% of 
SPARTAN-6). Such low footprint allows the FPGA to host 
others such as processors for IoT. 

C. LED-64 Cipher System for SCADA IEC101 Data 

Figure 5 illustrates the LED-64 with two asynchronous 
receive-and-transmits, two buffers and a controller that have 
been realized on SPARTAN 3E FPGA. The set-up is to 
evaluate LED-64 as a crypto-system to encryption/decrypt 
serial data streams, as an initial prototype. The buffers are 
for data buffering that to adapt data throughput and data-
width between serial and crypto-algorithm processing. Each 
buffer has two clock sources; one is the system clock 
(sys_clk) and the other is clock generated by the UART 
(uart_clk). The uart_clk has frequency multiple of serial data 
baud rates to synchronize data movement in/out of buffers. 

The controller is to detect data availability in the buffers, 
to initiate an encryption process, and also to check 
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completion of encryption. 

BufferUART UARTBuffer

Controller

LED64

sys_clk

sys_clk

uart_clk uart_clk

Figure 3: LED-64 Cipher System 

The baud rate for serial communication can be adjusted to 
9600 to 115K. Samples of SCADA payload (of IEC 60870-
5-101) for encryption are tabulated in Table 6. 

Table 6:   Samples Payload Encrypted/Decrypted 

APDU type Function 
(Control/Monitor)

APDU 
Length

Payload

U-format Start data transfer 4 68 04 07 00 00 00
U-format Test (control) 4 68 04 43 00 00 00
U-format Test (monitor) 4 68 04 83 00 00 00
I-format Command 14 68 0e 1a 00 ……
I-format Value short float 250 68 fa 00 …….

VII. CONCLUSION

Related research on the need to securing SCADA data 
and revision of lightweight encryption devices (LED) 
algorithm provide background for this project. Several 
architectures of LED implementation into hardware have 
been reviewed, and followed by a detail design of 
components within LED on FPGA. In this project, hosting a 
complete LED-based cipher system on a single FPGA offers 
a low-cost security device for legacy SCADA, while able to 
meet timelines requirement. Evaluation of a selected cipher,
LED in this case, has been successfully implemented on a
low-cost FPGA to encrypt tele-control data packets. The 
size of synthesized LED-64 algorithm requires merely one 
percent of low cost FPGA resources (SPARTAN 6), and yet 
able to process data packets at 266MHz.
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