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Abstract: Multi-purpose advanced systems are considered a complex problem in water resource
management, and the use of data-intelligence methodologies in operating such systems provides
major advantages for decision-makers. The current research is devoted to the implementation of
hybrid novel meta-heuristic algorithms (e.g., the bat algorithm (BA) and particle swarm optimization
(PSO) algorithm) to formulate multi-purpose systems for power production and irrigation supply.
The proposed hybrid modelling method was applied for the multi-purpose reservoir system of
Bhadra Dam, which is located in the state of Karnataka, India. The average monthly demand for
irrigation is 142.14 (106 m3), and the amount of released water based on the new hybrid algorithm
(NHA) is 141.25 (106 m3). Compared with the shark algorithm (SA), BA, weed algorithm (WA),
PSO algorithm, and genetic algorithm (GA), the NHA decreased the computation time by 28%, 36%,
39%, 82%, and 88%, respectively, which represents an excellent enhancement result. The amount
of released water based on the proposed hybrid method attains a more reliable index for the
volumetric percentage and provides a more effective operation rule for supplying the irrigation
demand. Additionally, the average demand for power production is 18.90 (106 kwh), whereas the
NHA produces 18.09 (106 kwh) of power. Power production utilizing the NHA’s operation rule
achieved a sufficient magnitude relative to that of stand-alone models, such as the BA, PSO, WA,
SA, and GA. The excellent proficiency of the developed intelligence expert system is the result
of the hybrid structure of the BA and PSO algorithm and the substitution of weaker solutions in
each algorithm with better solutions from other algorithms. The main advantage of the proposed
NHA is its ability to increase the diversity of solutions and hence avoid the worst possible solutions
obtained using BA, that is, preventing a decrease in local optima. In addition, the NHA enhances the
convergence rate obtained using the PSO algorithm. Hence, the proposed NHA as an intelligence
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model could contribute to providing reliable solutions for complex multi-purpose reservoir systems
to optimize the operation rule for similar reservoir systems worldwide.

Keywords: hybrid expert system; bat algorithm; particle swarm optimization algorithm; multi-purpose
system; water resource management

1. Introduction

Water resource management attempts to control water scarcity during successive drought
periods [1]. Climate change phenomena and increasing population demands cause serious natural
dilemmas that necessitate the operation of an optimal and reliable system for managing water
resources [2–4]. The optimal operation of stored water resources in the form of reservoirs behind
dams is an important and complicated issue for decision-makers and designers worldwide, because
optimal operations can decrease the expenditure of constructing large dams for policymakers in the
water resource management field [5]. Thus, several studies have investigated the optimal operation of
reservoirs to satisfy downstream consumer demands and supply water based on high certainty [6–8].
Recently, mathematical models and evolutionary algorithms have been used in the management and
planning of water resources [9–12]. The problem with optimal operations related to water reservoirs can
be defined within the framework of an optimization problem [13–15]. Thus, meta-heuristic algorithms,
which are powerful tools, are used for solving such problems [16]. The water supply problem
includes several factors, such as environmental, municipal, and agricultural supply demands [10,17].
Consequently, solving these real-life problems can promote comprehensive visions and plans for
the improved management of water resource applications. Various challenges are observed in
solving the reservoir operation problem, including the stochasticity in the system input and the
uncertainties in the computation of non-linear factors, such as water loss from the reservoir. In addition,
the needs of the stakeholders influence the allocation of the reservoir water, and accommodating these
needs in the operation of the reservoir is a complex task for decision-makers [18–22]. Furthermore,
climate change is one of the most influential variables that might negatively affect the pattern of
the water supply, and addressing these problems is critical for decision-makers. Therefore, defining
an appropriate optimization algorithm with effective mathematical models is essential to providing
effective operation guidance and informing comprehensive planning for current and future periods.
The successful determination of optimal operation procedures for reservoir water systems could
provide decision-makers with effective tools to optimize the allocation and distribution of these
resources [23–25]. In fact, most mathematical models, such as nonlinear programming, cannot be
accurately adapted with multi-objective problems and perform the optimization procedure in a
reasonable time period. In addition, these models should be able to consider effective parameters
that influence the optimization process, such as climate change conditions or uncertain inflow to
reservoirs [10]. Furthermore, in a few cases, the proper identification of dam and reservoir water
system features (complex problems) requires the application of optimization tools as well as water
allocation tools, such as game theory methods, to effectively operate the system [23–25]. Therefore,
optimization algorithms capable of receiving and handling large data (non-stationary and stochastic
in nature) under different climate change conditions could be used as effective tools for planning
and managing water resources. Notably, models that are not limited to one specific problem or
one particular boundary condition might not suitable for dam and reservoir water systems, because
reservoir operation problems usually present different boundary conditions and are influenced by
climate change conditions [25]. The water released for irrigation demands is very important because
the development of agriculture in a basin is dependent on the fair allocation to the downstream
consumers [17]. Therefore, supplying enough water to meet irrigation water demands requires
accurate planning to avoid the risk of serious irrigation deficiencies, which will negatively affect crop
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production. In addition, water released from the reservoir is dependent on the physical characteristics
of the dam and reservoir system, and these characteristics can be highly non-linear, such as the
interrelationship among the elevation, surface area, and storage in the reservoir [18]. In this context,
generating optimal operation rules for water release based on nonlinear or linear objective functions
with different constraints is considered an important problem for policymakers [20].

1.1. Background

Many research efforts have been developed to investigate the potential of using meta-heuristic
algorithms to generate optimal operation rules for dams and reservoir water systems. The honey bee
optimization algorithm (HBOA) with a mutation operator has been utilized to minimize hydropower
deficits [25]. This algorithm has been applied in multiple reservoirs, such as the Karun and Dez
reservoirs located in southern Iran. The minimum and maximum operational storage for Dez and
Karun are set to (453 and 2813) and (1518 and 2802) MCM (million of cubic metres), respectively.
The researchers performed a comprehensive sensitivity analysis and compared the results with those
of the genetic algorithm (GA) to verify the outstanding performance of this method. The results
indicated that the improved HBOA could be a global solution based on less iteration than that of the
GA and the particle swarm optimization (PSO) algorithm.

Genetic programming (GP) is one of the most effective optimization algorithms and has been
applied for several optimization problems in the hydrology field. GP was used as an optimization tool
to optimize the operation rules of a reservoir to meet the irrigation demands [26], where the released
water was considered a decision variable. The methodology was applied to the Karaj reservoir as
a case study. This reservoir is located on the Karaj River and has an active volume of 176 × 106 m3

and an annual average inflow of 415.23 × 106 m3. The released water based on the GA could meet
downstream demand patterns effectively, and the annual average irrigation deficits based on the GA
were 12% and 22% less than those achieved using the PSO algorithm and GA, respectively.

The PSO algorithm is a heuristic search tool used by Ostadrahimi et al. [27] to extract rule curves
for optimizing the hydropower generation of multi-reservoir operations. The case study used to
examine the PSO algorithm was a relatively small section of the Columbia River basin, which includes
the Mica, Libby, and Grand Coulee reservoirs. The released water was considered the decision variable,
and reservoir storage was considered the state variable. The results indicated that hydropower
generation could be increased by approximately 12% and 15% using the PSO algorithm compared
with the HBOA and GA, respectively. Additionally, the convergence rate experienced using the PSO
algorithm was relatively faster than that of GA and HBOA.

Nonlinear order rule curves have been used with GAs for the operation of water systems with the
aim of decreasing irrigation deficiencies, and the results have shown that released water based on the
third-order rule curve could supply downstream demands well [28]. Another study conducted
reservoir operations of a three-reservoir system (Karoon4, Khersan1, and Karoon3) via GP [29].
The capacities of those reservoirs are 2190, 332.55, and 2522 × 106 m3, respectively. The aim of
these studies was to minimize irrigation deficiencies. Downstream demands were supplied based on a
volumetric reliability index of approximately 90%, while the supply for the downstream irrigation
demand based on the GA was accompanied by high deficiencies during the operation period of the
reservoir. Another study focused on the Karoon4 reservoir and utilized the water cycle algorithm
(WCA) to increase the benefit of hydropower generation based on the released water, and the results
showed that compared with the PSO algorithm and the GA, the WCA increased the annual benefit
of hydropower generation by approximately 30% and 40%, respectively [30]. For the same reservoir,
Haddad et al. [31] tested the biography-based optimization (BBO) algorithm for increasing hydropower
generation. The results showed the high ability of the BBO algorithm based on a fast convergence
speed and highly accurate computations.

An adaptive PSO algorithm was considered in another study [32]. This algorithm was modified
based on the correction of the inertia coefficient. Additionally, the new method was used for
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multi-reservoir operations in a large-scale basin. The proposed method was implemented in the
Three Gorges Project, with 42.23 bkW hydropower generation, and the XiLuoDo Project (XLDP),
with 30.10 bkW. The new method had faster convergence and could yield solutions that were close to
the global solution [32].

For the Karoon4 reservoir, Haddad et al. [31] tested the BBO algorithm for increasing hydropower
generation. The results showed the high ability of the BBO algorithm based on a fast convergence
speed and highly accurate computations.

The imperialist competitive algorithm (ICA) optimized ten system reservoirs with the aim of
increasing power generation. The results showed that the ICA could increase annual power generation
and yield the best solution based on fewer iterations during the convergence process [33].

A comparative study has been carried out by Azizipour et al. [8] to optimize the performance of
a multi-reservoir system based on the weed algorithm (WA), GA, and PSO algorithm with the aim
of decreasing irrigation deficiencies. This study focused on single and multi-reservoir operations of
Dez reservoir, which has an average annual inflow to the reservoir of approximately 5950 million
cubic meter per year. The results showed that the method could decrease the vulnerability index by
approximately 12%, which reduced the deficiency of the operation based on the applied algorithm.

Another comparative study by Ehteram et al. [34] utilized the shark algorithm (SA) to optimize the
performance of a multi-reservoir system for increasing hydropower generation in China. The maximum
capacity of the hydropower plant was 600 MW. This algorithm is based on the rotational movement of
sharks for escaping local optima. The SA could increase the convergence speed compared with the GA
and PSO algorithms, and the annual power production was increased by approximately 20% and 40%
compared with that of the PSO algorithm and GA, respectively.

The krill algorithm (KA) based on the swarm behaviors of krill is an advanced method used to
increase the benefits of hydropower generation for multi-reservoir operations of the Timah reservoir
located in Perlis, Malaysia [35]. This reservoir has a storage capacity between 28.74 × 106 and
40 × 106 m3. The results indicated that compared with the PSO algorithm and the GA, the KA
could increase the annual benefits of power generation by 12% and 15%, respectively. Additionally,
the convergence velocity for the KA was considerable.

The spider monkey algorithm (SMA) has been applied to the Karun reservoir by Ehteram et al. [35]
for increasing hydropower generation, where the algorithm is based on the personal and swarm efforts
of monkeys to find the best position for acquiring food. The results indicated that the algorithm
performed better than the bat algorithm (BA), PSO algorithm, and GA, because it seeks to realize
global solutions and convergence velocities.

However, the previous algorithms have key problems. For example, the GA traps local optima for
certain multi-reservoir systems or exhibits slow convergence for certain problems [35]. The PSO
algorithm encounters immature solutions with early convergence, which is a problem for this
algorithm [35]. The BA requires the accurate determination of random parameters, such as maximum
frequency, loudness, and pulsation rate, and may also trap local optima for complex engineering
problems [3]. Studies have attempted to solve the different weaknesses of the various algorithms.
For example, one study used the hybrid gravitational search algorithm (GSA) with GA, where GSA was
used to provide a basic solution domain of problems and then genetic operators within the GA were
used for upgrading the solutions [36]. A novel PSO algorithm with mutation strategies was introduced
to provide solutions, and was then updated by a time-varying acceleration PSO algorithm to achieve
the optimal solutions [37]. A hybrid PSO–GA was used to improve the balance between exploration
and exploitation ability of the PSO algorithm based on genetic operators [38]. A parameter-free penalty
function for the BBO was used to solve reliability redundancy allocation problems [39]. An improved
artificial bee colony (ABC) based on the foraging behavior of global and guided best honeybees was
used to solve complex optimization tasks [40]. However, these different algorithms have different
weaknesses that should be improved. Note that the motivation for exploring a more robust and stable
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meta-heuristic method for modelling reservoir operation systems is still an ongoing focus for research
on water resources by expert system scholars.

1.2. Problem Statement and Novelty

The studied problem is highly complex, and the main motivation behind establishing the current
research is to discover the optimal solution for multi-purpose hydropower systems. The complexity
arises from the highly stochastic relationship between optimal reservoir releases and various
hydrological elements (e.g., water storage, water loss, inflow amount, and actual water demand).
The maximized hydropower production constraint is not the only predominant variable for the
optimization function, however, irrigation demands and sustainable water storage are tremendously
important variables that affect this function. Such conditions of the multi-reservoir water system
make the generation of optimal operation rules using a particular optimization algorithm a great
challenge for researchers and decision-makers. Therefore, relying on one optimization algorithm
to solve such a complex optimization application may be insufficient even when using a highly
advanced algorithm. The main concerns in multi-reservoir water systems in terms of optimization
include the search for the global optima of the system domain and the time required for convergence.
For example, the BA is a well-known meta-heuristic approach that functions as a suitable tool for
solving optimization problems [41–43]. Bozorg-Haddad et al. [44] applied the BA for reservoir
operations with the aim of increasing power generation, and although power production could
be increased, the BA is accompanied by certain weaknesses. One of the main problems is trapped local
optima, although the algorithm exhibited a relatively fast convergence rate [44]. Alternatively, the PSO
algorithm is known as an effective optimization algorithm in terms of its searching ability to achieve
the global optima [5,32,45]. The local and global versions of this algorithm provide direct solutions
to attain the optimum solution, while its drawback is the slow convergence rate. Thus, the problems
associated with the BA and PSO algorithm, that is, trapping in local optima and slow convergence,
respectively, motivated the authors to conduct the current study.

In this study, a new method based on hybridizing two meta-heuristic model structures (BA and
PSO algorithm), namely the new hybrid algorithm (NHA), is proposed and developed to generate
optimal operation rules for a multi-purpose reservoir water system. Conceptually, the proposed
NHA model intends to introduce a hybrid algorithm structure that can replace the weakness of each
algorithm with other algorithms. The PSO algorithm is used based on a hybrid framework to improve
the BA’s ability to search for the global optima, while the BA is used to speed up the convergence rate.
In this fashion, the main innovation of this paper is the proposition of an optimization model that can
generate optimal operation rules for multi-purpose water operating systems with a high ability to
search for global optima with a relatively high convergence rate.

Therefore, the novelty of the current research is focused mainly on two points: (1) introducing a
hybrid optimization algorithm that can expand the search domain with sufficient diversity to avoid
trapping the local optima and (2) creating an algorithm that is flexible enough to handle multi-purpose
systems. To this end, the proposed algorithm should be examined using different benchmark functions
to ensure its ability to achieve the global optima. In addition, the algorithm should be applied to
a multi-purpose reservoir with different demands, and its results should be examined against the
required system’s purposes to achieve effective and reliable operations. Furthermore, the current
research provides insights on several performance indexes proposed to evaluate the achieved results.

1.3. Research Objectives

The main objective of this study is to propose the NHA to generate optimal operation rules
for a multi-purpose reservoir water system, which is of importance for water resource supply and
management worldwide. Therefore, a multi-purpose reservoir water system in India, namely the
Bhadra reservoir system, which both supplies irrigation demands and produces power, is used in this
study to examine the proposed optimization algorithm. In addition, several optimization algorithms
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and the proposed hybrid algorithm were applied to examine the effectiveness of the proposed NHA
over the other algorithms. On the basis of the operations, a comprehensive analysis of the ability of the
NHA to achieve the global optima and the convergence rate was carried out.

2. Methodological Overview

2.1. Bat Algorithm (BA)

Bats can produce sounds and receive the echo of the sounds from surrounding objects [41]. Thus,
they can identify an obstacle from prey based on the received frequencies. The BA is based on the
following assumptions:

• Echolocation is used by all bats, and this ability is helpful for identifying prey from obstacles.
• Bats fly at a random velocity, vl, and at a random location, xl. The frequency of a bat is fl. A0 and

λ represent the loudness and wavelength of bats, respectively.
• The loudness of bats varies from A0 (i.e., a large positive number) to Amin.

The velocity, location, and frequency are updated based on the following equations [46]:

fl = fmin + ( fmax − fmin)× β, (1)

vl(t) = [yl(t− 1)−Y∗]× fl , (2)

yl(t) = yl(t− 1) + vl(t)× t, (3)

where fl is the frequency; fmin is the minimum frequency; fmax is the maximum frequency; β is the
random value between 0 and 1; Y∗ is the best position of bats; vl(t) is the current velocity of bats; yl(t)
is the current position of bats; and t is the time step.

A local search is considered based on the following formula using a random walk algorithm,
and this level is referred to as the random fly level [41,42].

y(t) = y(t− 1) + εA(t), (4)

where ε is a random value between −1 and 1 and A(t) is the loudness.
The loudness (At) and pulsation rate (rl) are updated in each iteration of the algorithms. The value

for loudness decreases and the pulsation rate increases when the bats find their prey. The pulsation
rate for the generated sounds is updated based on the following equation [47]:

rt+1
l = r0

l [1− exp(−γt)]At+1
l = αAt

l , (5)

where rt+1
l represents the new pulsation rate and α and γ are constant values. Figure 1 shows the

different levels for the BA.
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Figure 1. Bat algorithm procedure (rnd: random number).

2.2. Particle Swarm Optimization (PSO) Algorithm

If the search space is considered in the D dimension, the position of the particles is shown
by Xi = (xi1, xi2, . . . , xiD)

T , whereas the velocity is represented by Vi = (vi1, vi2, . . . , viD)
T .

Pi = (pi1, pi2, . . . , pid)
T is considered the best prior calculated position, and the index g in the equations

is used to determine the best particle among other particles based on the quality of the objective
function. The position and velocity for the PSO algorithm are updated based on the following
equations [48]:

vn+1
id = χ

wvn
id + c1rn

1
(pid − xn

id)

∆t
+ c2rn

2

(
pgd − xn

id

)
∆t

, (6)

xn+1
id = xn

id + ∆tvn+1
id , (7)

where vn+1
id is the new velocity for the particles; χ is the constriction coefficient; w is the inertia

coefficient; c1 and c2 are the acceleration coefficients; ∆t is the time step; n is the time index; and xn+1
id

is the new position of the particles.
First, the random parameters, as well as the initial velocity and position, are considered for the

PSO algorithm [49]. The objective function is calculated for each member, and the best particle among
the remaining particles is determined; then, the velocity and position are updated based on Equations
(6) and (7), respectively [46,49]. Thus, the convergence criteria are stopped, and if the algorithm is
satisfied, the algorithm finishes; otherwise, the algorithm returns to the first step. It should be noted
here that the used version of the PSO in the current study is the modified one over the standard
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version. In this version, the one used, the weights are computed based on the following dynamical
form equation:

w = wend + (wstart − wend)
(

1− T
Gmax

)
← i f

(
pgd 6= xid

)
w = wend ← i f

(
pgd

)
= xid

(8)

where T is the number of iterations, T ∈ [0, Gmax); pgd is the global bets position; wstart is the initial
weight; and wend is the final value for the weight in the maximum iteration. Thus, the used PSO is an
improved PSO that outperforms other versions.

2.3. New Hybrid Algorithm (NHA)

The NHA is considered based on a parallel structure. Each algorithm acts based on an independent
process, and then the output population of each algorithm is divided into subgroups (see Figure 2).
Subsequently, a communication strategy shares information between the PSO algorithm and BA. The K
agent of each algorithm, as the best member, is copied into the other algorithm instead of the worst
solutions of the other algorithm. Thus, the worst solution achieved based on the BA is replaced using
the one attained using the PSO algorithm. The total size population for the NHA is N, and N/2
represents the size population for the BA and PSO algorithm. R in Figure 2 represents the number of
communication steps between the PSO algorithm and the BA, t denotes the current iteration count,
and they are at the same level because two algorithms act simultaneously. Both the BA and PSO
algorithms are executed concurrently within the same time step, and the achieved solutions at each
time step are swapped between them synchronously. Accordingly, the NHA starts from an initial
population as decision variables and ends when the convergence criteria are satisfied.

The NHA is based on the following levels:

• The random parameters are initialized for two algorithms, and then the velocity and position
vectors are considered for the BA and PSO algorithms;

• The objective function is individually calculated for the two algorithms, and then the best member
is determined for the two algorithms;

• The velocity and position are updated for the BA based on Equations (1)–(3), and the velocity and
position are updated based on Equations (6) and (7), respectively;

• The K agent, as the best member of each algorithm, is copied to the other algorithms, which are
substituted with the worst solutions of the other algorithm;

• The convergence criteria are checked, and if the algorithm is satisfied, the algorithm finishes;
otherwise, the algorithm returns to the second step.

Although the proposed NHA procedure is established with a strong linkage between the BA and
PSO algorithm, the NHA still faces a challenge during initialization for several random parameters
for both algorithms. In addition, there is a need to adapt the random parameters for both the BA and
the PSO algorithm within the definition of the NHA communication to enable it to simultaneously
update within the mathematical model of the reservoir. This step adds more complexity within the
proposed NHA for generating the operation rule to extract the optimal decision variables accurately
for both algorithms.
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2.4. Weed Algorithm (WA)

The WA is based on the characteristics of weeds [50]. Weeds can grow spontaneously and adapt
to their surroundings easily. The following assumptions are considered for the WA [34]:

• Weeds are grown based on seeds, which are spread throughout the environment.
• Weeds that grow close to each other are known as a colony, and they can produce seeds based on

their equality.
• Each produced seed distributes randomly throughout the environment.
• The algorithm finishes when the number of weeds reaches the maximum number.
• The different levels for the WA are based on the following levels:
• First, the initial population of the algorithm (Pinitial) is considered, and the position of each weed

in the environment (i.e., search space) is considered a decision variable.
• The next level is known as the reproduction level. Reproduction causes new seeds to be produced

from colonies, and the maximum and minimum numbers of seeds are (N0Smax) and (N0Smin),
respectively (see Figure 3). Reproduction is an important level for the WA because there
are two group solutions in the evolutionary algorithms. Appropriate solutions have a high
chance of reproduction to continue the production of the best member for the next generation,
and inappropriate solutions may have a weak chance of reproduction; however, they may have
important information for the next levels of the algorithm. Thus, reproduction may be extended
to inappropriate solutions that are not removed from the population, and they can continue their
life based on suitable reproduction and the improvement in their quality. Some inappropriate
solutions have important information, and this information can be used for the next levels of
the algorithm.

• The produced seeds are distributed in the search space based on a normal distribution and
zero mean.
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The standard deviation for the distribution of seeds is variable and calculated based on the
following equation [34,50]:

σiter =
(itermax − iter)

(itermax)
n

(
σinitial − σf inal

)
, (9)

where σiter is the standard deviation; itermax is the maximum iteration number; iter is the current
iteration number; σinitial is the initial standard deviation; n is the nonlinear modulus; and σf inal is the
final standard deviation. Equation (9) shows that the distribution of the population is based on the
standard deviation.

If weeds cannot produce seeds, they become extinct. Additionally, a number of seeds can be
produced based on weeds limited to Pmax, and there is competition among weeds because weeds of
poor quality should be removed for population balance. Figure 4 shows the WA procedure.
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2.5. Shark Algorithm (SA)

Sharks have powerful olfactory receptors and can find their prey based on these receptors [51].
This algorithm acts based on the following assumptions [35]:

• Injured fish are considered to be prey for sharks, as fish bodies distribute blood throughout the
sea. Additionally, injured fish have negligible speeds compared with sharks.

• The blood is distributed into the sea regularly, and the effect of water flow is not considered for
blood distribution.

• Each injured fish is considered as one blood production resource for sharks; therefore, the olfactory
receptors help sharks find their prey.

• The initial population for sharks is shown by
[
X1

1 , X1
2 , . . . , X1

NP
]
, NP = population(size).

Each solution candidate or shark position can have the following components based on the
following equation:

X1
i =

[
x1

i,1, x1
i,2, . . . x1

i,ND

]
, (10)

where X1
i is the initial position vector; x1

ij is the jth dimension of the shark position; and ND is the

number of decision variables. The initial velocity for sharks is shown by V1
i =

[
v1

i,1, v1
i,2, . . . , v1

i,ND

]
.

The velocity components are considered based on the following equation:

V1
i =

[
v1

i,1, v1
i,2, . . . , v1

i,ND

]
, i = 1, . . . NP, (11)

where V1
i is the initial velocity vector and v1

ij is the jth dimension of the shark velocity. When the
shark receives greater odour intensity, it moves faster towards its prey. Thus, if the odour intensity
is considered an objective function, the velocity changes with the variation in the objective function
based on the following equation:

Vk
i = ηk.R1.∇(OF)

∣∣∣xk
i
, (12)

where ηk is the number between 0 and 1; R1 is the random number; and OF is the
objective function.

There is inertia in the shark’s movement, which should be considered in the shark velocity; thus,
Equation (12) is modified based on the following equation:

vk
i,j = ηk.R1.

∂(OF)
∂xj

+ α.R2.vk−1
i,j , (13)

where α is the inertia coefficient and R2 is the random value between 0 and 1.
Sharks have a specific domain for velocity. Their maximum velocity is 80 km/hr, and their

minimum velocity is 20 km/hr. Thus, a velocity limit is considered, and Equation (13) is modified
based on the following equation:

∣∣∣vk
i,j

∣∣∣ = min

∣∣∣∣∣ηk.R1.
∂(OF)

∂xj

∣∣∣∣∣
xk

i,j

+ αk.R2.vk−1
i,j

∣∣∣∣∣∣,
∣∣∣βk.vk−1

i,j

∣∣∣
, (14)

where βk is the velocity limiter. Then, the shark position is updated based on the following equation:

Yk+1
i = Xk

i + Vk
i ∆tk, (15)
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where ∆tk is the time step and Yk+1
i is the new position for the shark. Sharks have a rotational

movement operator. This operator indicates which shark can escape from the local optima, and the
shark position based on the rotational movement is modified based on the following equation:

Zk+1,m
i = Yk+1

i + R3.Yk+1
i , m = 1, . . . , M, (16)

where Zk+1,m
i is the new shark position and M is the number of local searches for the sharks. Figure 5

shows the SA process.
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2.6. Genetic Algorithm (GA)

First, the initial population for the GA consists of chromosomes, and the next population for the
next generation is produced based on a repetitive process. The members with the best quality are
selected, and the crossover operators and mutation operators are applied to the population to improve
the solutions. The crossover is considered based on the following equation [35]:

Popnew
i = αPopold

i + (1− α)Popold
j , (17)

Popnew
j = αPopold

j + (1− α)Popold
i , (18)

where Popnew
i is the i-th child; Popold

i is the i-th parent; Popold
j is the j-th parent; α is the random number;

and Popnew
j is the j-th child. The mutation is considered based on the following equation:

Popnew
j,i = Varlaw

j,i + β
(

Varhi
j,i −Varlaw

j,i

)
, (19)
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where Popnew
j,i is the i-th new gene in the j-th chromosome; Varlaw

j,i is the lower limit of the i-th gene

in the j-th chromosome; Varhi
j,i is the upper limit of the i-th gene in the j-th chromosome; and β is

the random number. This crossover causes a change in the genes between two selected members
when producing a new member. The mutation operator changes the chromosomes when producing
new members.

3. Case Study and Modelling Procedure

3.1. Benchmark Function

To test the superiority of the NHA, five global optimization problems were selected to compare
the new method with the other methods (Table 1). A unimodal function has a single extremum,
and multi-modal functions have multiple extrema; thus, if the exploration ability of the algorithm is
weak, it cannot search the entire problem space.

Table 1. Details of benchmark functions.

Test Problem Objective Function Search
Range

Optimum
Value Dimension Characteristic Acceptable

Error (AE)

Schwefel function
[52] f1(x) =

D
∑

i=1

(
i

∑
j=1

xj

)2

[−100, 100] 0 30 Unimodal 1.0 × 10−3

Rastrigin
[52]

f2(x) =

10D +
D
∑

i=1

∣∣x2
i − 10 cos(2πxi)

∣∣ [−5.12, 5.12] 0 30 Multimodal 5.0 × 10−1

Dekkers and Aarts [52]
f3(x) = 105x2

1 + x2
2 −(

x2
1 + x2

2
)
+ 10−5(x2

1 + x2
2
)4 [−20,20] −24,777 2 Unimodal 1.0 × 10−5

Step function
[52] f4(x) =

D
∑

i=1
(|xi + 0.5|)

2
[−100, 100] 0 30 Unimodal 1.0 × 10−3

Axis parallel function
[52] f5(x) =

D
∑

i=1
ix2

I [−5.12, 5.12] 0 30 Unimodal 1.0 × 10−5

3.2. Multi-Purpose Reservoir Operation

A multi-purpose reservoir system named Bhadra was considered to evaluate the NHA.
The Bhadra Dam is located at 13◦42′ N and 75◦38′20” E in the state of Karnataka. The location
is characterized by a mean precipitation value of approximately 2320 mm, and 90% of the precipitation
occurs during the monsoon period. Bhadra is a multi-purpose system reservoir that supplies water
for demand and power production [53]. The active storage capacity for this reservoir is 1784 Mm3.
The irrigation area is 6367 ha, and the total area of the left and right bank canals is 87,512 ha. Figure 6a
shows the schematization of the dam and reservoir’s basin, and Figure 6b shows the geographical
location of the catchment area of the basin. The features of the reservoir can be seen in Table 2.
Figure 6a shows the details for the system and Figure 6b shows the location of system on the river
section. The command area for the river basin is 162,818 ha.

There are three turbines in this basin. The turbines are located along the right bank canal, left bank
canal, and riverbed. The operating head for the right bank canal (Phase1) varies from 38.564 to 54.41 m,
that of the left bank canal (Phase2) varies from 36.88 m to 56.69 m, and that of the riverbed varies
from 36.88 to 55.12 m. When the water height is within the domain of the defined operation head,
it moves in the direction of the turbines; otherwise, it is used for irrigation demands. Figure 7 shows
the schematic of the multi-purpose system.
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Figure 6. (a) Schematic diagram of the Bhadra reservoir system; (b) location of basin.

The necessary data, such as the monthly inflow, were obtained from the Water Resource
Development Organization (Bangalore) and cover 10 years from 1990–1991 to 2000–2001. Semi-dry,
garden, and paddy crops are important for this basin. The irrigation demand and power production
should be supplied for the downstream region. Thus, the first objective function is to minimize
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irrigation deficiencies, and the second objective function is related to maximizing power production.
Equation (20) is used for minimizing irrigation deficiencies:

SQDV =
12

∑
t=1

(Dl,t − Rl,t)

2

+
12

∑
t=1

(Dr,t − Rr,t)

2

, (20)

where SQDV is the square deviation in the demand and released water; Dl,t is the demand for the left
bank canal; Dr,t is the demand for the right bank canal; Rl,t is the released water for the right bank
canal; and Rr,t is the released water for the left bank canal.

Table 2. Salient features of the Bhadra system.

Description Quantity

Gross storage capacity 2025 Mm3

Live storage capacity 1784 Mm3

Dead storage capacity 241 Mm3

Average annual inflow 2845 Mm3

Left bank canal capacity 10 m3/s
Right bank canal capacity 71 m3/s
Left bank turbine capacity 2000 kW

Right bank turbine capacity (Phase2) 13,200 kW
Riverbed turbine capacity (Phase3) 24,000 kW

The second objective function is defined based on the following equation:

E =
12

∑
t=1

(k1Rl,tHl,t + k2Rr,t Hr,t + k3Rb,tHb,t), (21)

where E is the produced energy; k1, k2, and k3 represent the power coefficients; r is the right side of the
bank canal, Rl,t, Rr,t, and Rb,t represent the released water for the left and right bank canals and the
river bed, respectively; and Hl,t, Hr,t, and Hb,t represent the net head for the left and right canals and
the riverbed, respectively. The head values are extracted based on a regression continuity Equation (21)
based on storage values. The released water volume is a decision variable to be applied annually for
ten years during the period between 1991 and 2000.

The continuity equation is defined based on the following equation:

St+1 = St + It − (Rlt + Rrt + Rbt + EVt + OVFt), (22)

where St+1 is the storage at time t + 1; It is the inflow at time t; EVt is the evaporation loss; and OVFt is
the overflow.

The constraints are considered based on the following equations:

• The storage constraint is as follows:

Smin ≤ St ≤ Smax, (23)

where Smax is the maximum storage and Smin is the minimum storage.
• The power production constraints are as follows:

k1Rl,tHl,t ≤ E1,max, (24)

k2Rr,tHr,t ≤ E2,max, (25)

k3RbtHbt ≤ E3,max, (26)
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where E1,max, E2,max, and E3,max represent the maximum energy for the left canal, right canal, and
riverbed, respectively.

• The canal capacity constraints are as follows:

Rl,t ≤ Cl,max, (27)

Rr,t ≤ Cr,max, (28)

where Cl,max is the maximum capacity for the left canal and Cr,max is the maximum capacity for
the right canal.

• The irrigation demands are as follows:

Dmin
l,t ≤ Rl,t ≤ Dmax

l,r , (29)

Dmin
r,t ≤ Rr,t ≤ Dmax

r,t , (30)

where Dmin
l,t is the minimum demand for the left canal; Dmax

l,r is the maximum demand for the left
canal; Dmin

r,t is the minimum demand for the right canal; and Dmax
r,t is the maximum demand for

the right canal.
• The steady storage constraint is as follows:

S13 = S1. (31)

This constraint has been considered to guarantee no change in reservoir storage at the beginning
of each cycle of operation in order to avoid the obstacle of reservoir carryover storage.

The above constraint causes the state condition to occur because the storage condition at the end
of the year must be equivalent to that at the beginning of the year. There are two objective functions
with opposite conditions; one objective function should be maximized, and the other objective function
should be minimized. Thus, a weighted method is used to handle these two factors. There are two
weight coefficients in Equation (32), and the irrigation demand has greater priority in this case study.
When the irrigation demands are supplied, water is used for power production. Thus, Kumar and
Reddy [53] suggested values of wt1= 100 and wt2 = −1 because the irrigation demands have greater
importance for policymakers in this basin. The weighted aggregate sum product assessment is used to
estimate and obtain accurate values for the weights [53]. Different weights are considered for different
terms within the objective function, and their relative indexes are calculated to determine the best
values for weights using NHA. Afterward, a ranking process is carried out utilizing the associated
indexes for all the allocated weights. Finally, the multi-criteria decision process is used to identify the
best allocated weight combination based on the highest rank.

The suggested values for these coefficients were calculated based on a sensitivity analysis by
considering the variation in the objective function versus the variation in the value of the weight
coefficients. Thus, the following equation is suggested for reservoir operations, and the aim of the
problem is to minimize the following objective function:

F = wt1
12
∑

t=1

[(
Dl,t−Rl,t

Dl,t

)2
+
(

Dr,t−Rr,t
Dr,t

)]
+ wt2

12
∑

t=1

[
E1,max−k1Rl,t Hl,t

E1,max
+

E2,max−k2Rr,t Hr,t
E2,max

+
E3,max−k2Rb,t Hb,t

E3,max

]
, (32)

where wt1 and wt2 represent the weight values; E1,max, E2,max, and E3,max represent the maximum
energy for the left canal, right canal, and riverbed, respectively; k1, k2, and k3 represent the power
coefficients; Rl,t, Rr,t, and Rb,t represent the released water for the left and right bank canals and the
riverbed, respectively; Hl,t, Hr,t, and Hb,t represent the net head for the left and right canals and the
riverbed, respectively; Dl,t is the demand for the left bank canal; Dr,t is the demand for the right bank
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canal; Rl,t is the released water for the right bank canal; and Rr,t is the released water for the left
bank canal.

The decision variable for this problem is released water, the total number of decision variables is
36 for one year (number of time periods = 12), and the number of variables for released water each
month is three (left canal, right canal, and riverbed). Thus, there are 360 decision variables in ten years.
The hybrid algorithm is considered based on the following levels for reservoir operation:

• The decision variables for the left canal, right canal, and riverbed are initialized based on the
initial matrix for the NHA. In fact, the released water for the downstream demands is considered
as the initial population.

• The storage reservoir can be calculated based on the continuity equation, and the different
constraints should be checked.

• If the constraints are not satisfied, the penalty functions are considered as violations; then,
the objective function is calculated based on Equation (31).

• Then, the NHA process is considered for the optimization process based on the independent
performances of the BA and PSO algorithm in the NHA.

• The convergence criteria are checked, and if the algorithm is satisfied, it finishes; otherwise,
the algorithm returns to the second step.

In fact, the released water for the multi-reservoir system is considered a decision variable, which is
inserted into the algorithms based on the initial matrix and population. Then, the reservoir storage
should be calculated based on the inflow into the reservoir and the initial values of the decision
variables. Subsequently, the storage and released water should be compared with the permissible
value so that they are not more or less than the permissible value. Then, the objective function for each
member or decision variable is calculated for the total operational period. Then, the operators of the
different algorithms are applied to the population and decision variables, and the algorithms continue
until the convergence criterion is satisfied.

4. Modelling Evaluation Indexes

It is necessary to evaluate the utilized evolutionary algorithms to investigate their performance
for downstream irritation supply. Thus, three important indexes are defined based on the following
information.

• Volumetric reliability index. This index is based on the ratio of released water to irrigation
demands. Thus, a high percentage of this index represents the high performance of each algorithm.

αV = 1−
NT

t=1(Dt > Rt)

T
, (33)

where αV is the volumetric reliability; Rt is the released water; Dt is the demand; NT
t=1(Dt > Rt) is

the number of periods in which demand is not supplied; and T is the total number of operational
periods.

• Vulnerability index. This index represents the maximum intensity of the failure that occurred
during the operation period of a system. The periods for which irritation demands are not met
are known as failure periods or critical periods, and maximum deficiency occurrences during
these periods are represented by the vulnerability index; thus, a low percentage for this index is
preferable [35].

λ = MaxT
t=1

(
Dt − Rt

Dt

)
× 100. (34)
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• Resiliency index. This index represents the existing speed of a system from failure. Thus, a high
percentage for this index is preferable. This index shows the flexibility of different algorithms
versus the critical periods when they should manage the system well [35].

γi =
fsi
Fi

, (35)

where γi is the resiliency index; fsi is the number of failure series that occurred; and Fi is the
number of failure periods that occurred. These indexes were used to evaluate the percentage
of success of the examined optimization algorithms based on their achieved operation rules to
minimize the gap between the water release and water demand. Furthermore, to evaluate the
performance of each algorithm with respect to the computational time needed for convergence,
the time consumption for each algorithm to achieve the operation rule was determined. The best
algorithm is the one that could achieve the global optima in less time for convergence.

5. Results, Discussion, and Application Analysis

5.1. Benchmark Functions

The standard deviation (SD), mean error (ME), average number of function evaluations (ANFE),
and success rate (SR) are used to compare the results achieved from each algorithm for each benchmark
function as shown in Table 3. The ANFE is used as the average of the function evaluations that
should be considered to obtain the termination criteria for 100 runs. The main purpose for including
several indexes is the possibility of having biased results, which occurs when using a single index.
For example, a particular algorithm might achieve the best value using a certain index, suggesting
that this algorithm has the best potential to achieve the best results, whereas the same algorithm
might fail when examined using another index. The results indicated that the NHA outperforms other
methods when examined using all indexes. In addition, the statistical Mann–Whitney rank sum test
is applied to evaluate the average function of 100 runs performed by two different methods, and it
indicates whether one method is superior to the other. If the NHA is not significantly better than
the other methods, the null hypothesis is supported; otherwise, the null hypothesis is rejected and
the two methods are compared with each other. The results show that the NHA could outperform
other methods based on statistical tests and different indexes. The parameters for the algorithms were
obtained by the sensitivity analysis and the methods are in the reference [52].

5.2. Sensitivity Analysis for the NHA

There are two main sources of uncertainty in this application; one is related to the optimization
algorithm itself, and the other is related to the nature of the inputs and outputs of the case study.
The uncertainty related to the optimization algorithm involves the initial parameters needed to
initialize the model. The uncertainty related to the case study is based on the historical reservoir inflow
records and water loss calculations from the reservoir due to evaporation and the release of water from
the reservoir.

Tables 4–7 show the details of the sensitivity analysis for the proposed and comparable
evolutionary algorithms. The sensitivity analysis shows the accuracy values of the random parameters
obtained based on the variation in the value of the objective function versus the variation in the values
of the random parameters. The size of the population for the NHA is 50 because the objective function
has the smallest value (1.98). The maximum frequency for the NHA is 7 Hz, while the minimum
frequency is 2 Hz. The acceleration coefficients (c1 = c2) are equal to 2, and the inertia weight is 0.7.
Other accurate values for the other algorithms can be seen in Tables 5–8. The population size for the
SA is 30, and the velocity limit for this method is 4. The mutation and crossover probabilities are
0.70 and 0.60, respectively. The size populations for Pinitial and Pmax based on the WA are 10 and 30,
respectively. Additionally, other parameters can be seen in Tables 5–7.
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5.3. Ten Random Results for Evolutionary Algorithms

Table 8 shows the ten random run results for different algorithms for the same year. The average
solution attained using the NHA is 1.98, which is the lowest value among the other algorithms.
The average solutions for the SA, BA, WA, PSO algorithm, and GA are 2.12, 2.45, 3.12, 3.45, and 4.15,
respectively. On the basis of the achieved results, the NHA minimized the objective function better
than the other algorithms. The computational time for the NHA is 50 s, whereas it is 70, 79, 83, 91,
and 94 s for the SA, WA, BA, PSO algorithm, and GA, respectively. Accordingly, compared with the
SA, BA, WA, PSO algorithm, and GA, the NHA decreased the computation time by 28%, 36%, 39%,
82%, and 88%, respectively, which is an excellent enhancement result.

Table 3. Experimental results using benchmark functions. SD—standard deviation; ME—mean error;
ANFE—average number of function evaluations; SR—success rate; NHA—new hybrid algorithm.

Function Algorithms SD ME ANFE SR

f1

Differential Evolution Algorithm 1.42 × 10−4 [52] 8.68 × 10−4 [52] 27,378 [52] 100
Artificial Bee Colony Algorithm 2.02 × 10−4 [52] 7.54 × 10−4 [52] 35,091 [52] 100

Particle Swarm Optimization 6.72 × 10−5 9.34 × 10−4 45,914.5 100
Bat Algorithm 5.12 × 10−5 6.12 × 10−4 231,245 100

Shark Algorithm 5.01 × 10−5 5.25 × 10−4 209,878 100
Genetic Algorithm 1.34 × 10−5 9.56 × 10−4 37,094 100

Spider Monkey Algorithm 2.12 × 10−6 [52] 5.65 × 10−5 19,878 [52] 100
Krill Algorithm 2.22 × 10−6 [52] 7.12 × 10−5 18,235 [52] 100

NHA 5.25 × 10−7 8.12 × 10−6 14,224 100

f2

Differential Evolution Algorithm 4.93 [52] 2.09 × 10−3 [53] 200,000 [52] 98
Artificial Bee Colony Algorithm 3.14 × 10−4 [52] 7.48 × 10−4 [53] 87,039 [52] 98

Particle Swarm Optimization 1.35 × 10+1 2.98 × 10−3 200,000 98
Bat Algorithm 3.24 × 10−5 3.12 × 10−5 54,223 98

Shark Algorithm 4.56 × 10−7 4.12 × 10−6 45,221 98
Genetic Algorithm 8.78 2.12 × 10−3 205,000 98

Spider Monkey Algorithm 6.12 × 10−8 [53] 5.12 × 10−7 [53] 32,124 [53] 98
Krill Algorithm 7.91 × 10−7 [53] 6.12 × 10−7 [53] 35,125 [53] 100

NHA 9.12 × 10−9 7.12 × 10−8 310,191 100

f3

Differential Evolution Algorithm 1.12 × 10−3 4.09 × 10−1 2725.5 100
Artificial Bee Colony Algorithm 5.25 × 10−3 4.09 × 10−1 2567 85

Particle Swarm Optimization 5.64 × 10−3 4.02 × 10−1 4979 85
Bat Algorithm 4.12 × 10−4 3.12 × 10−2 1285 85

Shark Algorithm 5.12 × 10−5 3.22 × 10−2 1100 98
Genetic Algorithm 1.12 × 10−2 4.12 × 10+1 1400 98

Spider Monkey Algorithm 5.78 × 10−5 2.12 × 10−4 987 98
Krill Algorithm 5.45 × 10−3 3.12 × 10−5 765 98

NHA 1.14 × 10−6 1.12 × 10−6 654 100

f4

Differential Evolution Algorithm 1.12 × 10+2 2.19 × 10+1 180,000 84
Artificial Bee Colony Algorithm 1.18 × 10+1 1.19 × 10+1 170,000 84

Particle Swarm Optimization 6.70 × 10+2 2.80 × 10−3 200,000 84
Bat Algorithm 5.70 × 10−3 1.12 × 10−4 180,000 84

Shark Algorithm 4.71 × 10−3 5.45 × 10−5 160,000 84
Genetic Algorithm 6.14 × 10+3 1.21 × 10−2 210,000 84

Spider Monkey Algorithm 1.45 × 10−4 3.12 × 10−5 180,000 84
Krill Algorithm 1.23 × 10−5 4.21 × 10−5 165,000 84

NHA 2.12 × 10−6 2.12 × 10−7 140,000 98

f5

Differential Evolution Algorithm 1.31 × 10−6 4.90 × 10−1 2741 100
Artificial Bee Colony Algorithm 2.00 × 10−6 4.87 × 10−1 4811 100

Particle Swarm Optimization 6.12 × 10−7 4.75 × 10−1 4912 100
Bat Algorithm 2.12 × 10−8 2.22 × 10−3 1811 100

Shark Algorithm 1.11 × 10−8 2.12 × 10−4 1712 100
Genetic Algorithm 1.21 × 10−5 3.21 × 10−4 5121 100

Spider Monkey Algorithm 2.12 × 10−8 5.12 × 10−3 1001 100
Krill Algorithm 1.14 × 10−8 5.45 × 10−4 987 100

NHA 1.41 × 10−9 6.78 × 10−5 567 100
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Table 4. Details of the sensitivity analysis for the new hybrid algorithm.

Size
Population

Objective
Function

W
(Inertia Coefficient)

Objective
Function c1 = c2

Objective
Function

Maximum
Frequency

Objective
Function

Minimum
Loudness

Objective
Function

10 2.45 0.30 2.21 1.6 2.34 1 2.11 0.3 2.23
30 2.24 0.50 2.00 1.8 2.12 2 2.00 0.5 2.05
50 1.98 0.70 1.98 2.0 1.98 3 2.14 0.7 2.0
70 2.01 0.90 2.12 2.2 2.12 4 2.16 0.90 2.1

Table 5. Details of the sensitivity analysis for the shark algorithm.

Size
Population

Objective
Function

βk (Velocity
Limiter)

Objective
Function αk

Objective
Function

10 2.45 2 2.44 0.20 2.55
30 2.12 4 2.12 0.40 2.12
50 2.24 6 2.34 0.60 2.67
70 2.36 8 2.44 0.80 2.78

Table 6. Details of the sensitivity analysis for the weed algorithm.

Pinitial Objective
Function Pmax Objective

Function N0Smax Objective
Function

5 3.69 10 3.55 3 3.78
10 3.12 30 3.12 5 3.34
15 3.24 50 3.28 7 3.12
20 3.36 70 3.32 9 3.44

Table 7. Details of the sensitivity analysis for the genetic algorithm.

Size
Population

Objective
Function

Mutation
Probability

Objective
Function

Crossover
Probability

Objective
Function

10 5.12 0.30 4.88 0.20 4.69
30 4.98 0.50 4.55 0.40 4.34
50 4.15 0.70 4.15 0.60 4.12
70 4.55 0.90 4.24 0.80 4.24

Table 8. Ten random results for the proposed hybrid evolutionary algorithm and the stand-alone
algorithms.

Run NHA SA BA WA PSO GA

1 1.99 2.12 2.45 3.16 3.45 4.15
2 1.98 2.12 2.47 3.12 3.51 4.24
3 1.98 2.12 2.49 3.12 3.45 4.26
4 1.98 2.12 2.45 3.12 3.45 4.15
5 1.98 2.14 2.45 3.12 3.45 4.15
6 1.98 2.12 2.45 3.12 3.45 4.15
7 1.98 2.12 2.45 3.12 3.45 4.15
8 1.98 2.12 2.45 3.12 3.45 4.15
9 1.98 2.12 2.45 3.12 3.45 4.15
10 1.98 2.12 2.45 3.12 3.45 4.15

Average solution 1.98 2.12 2.45 3.12 3.45 4.17
Coefficient variation 0.001 0.002 0.005 0.004 0.005 0.006

Time 50 70 79 83 91 94

The variation coefficient for the NHA model is less than that of the commensurate models (i.e., SA,
BA, WA, PSO algorithm, and GA). The NHA displayed a reliable outcome based on the average;
however, the average results have small variation coefficients, which can be seen in Figure 7, where the
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average, minimum, and maximum solutions overlap with each other and are well matched. Figure 8
shows the value of the objective function belonging to all data-intelligence models versus the number
of function evaluations (NFEs). The NFE for the NHA model is equal to 5000. The other established
models have NFE values of 8000, 1000, 12,000, 14,000, and 15,000 (SA, BA, WA, GA, and PSO algorithm,
respectively). Thus, the NHA can obtain the best solutions with a smaller NFE, which shows that the
NHA can obtain the converged solution faster than other algorithms.
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Figure 8. Comparison of the fitness value and number of function evaluation (NFE) for different
algorithms. GA—genetic algorithm.

5.4. Computed Irrigation Deficiencies

Different indexes were used to evaluate the irrigation deficiencies tabulated in Table 9. The highest
correlation attained for the proposed model had a magnitude of 0.93. Additionally, the absolute error
metric values (e.g., the mean absolute error (MAE) and root mean square error (RMSE)) prove that
released water can supply the irrigation demand for the left and right canals based on a smaller error
index value and greater correlation value. The SA attained an accurate level of modelling after the
use of the proposed hybrid model. Figure 9 shows the mode of the irrigation supply for all applied
algorithms. The average demand for the total operation period is 142.14 (106 m3), and the average
amounts of released water for the NHA, SA, BA, WA, PSO algorithm and GA are 141.25, 140.33, 138.75,
135.43, 134.12 and 133.21 (106 m3), respectively. Thus, the NHA can supply the irrigation demand as a
primary priority in this problem. The volumetric reliability, vulnerability and resiliency indexes were
used for more detailed information and a deep comparative analysis of all implemented algorithms.
The high percentage for the volumetric reliability index found for the NHA showed that irrigation
demands can be supplied for more operation periods; therefore, the volume of released water can



Sustainability 2019, 11, 1953 22 of 28

respond to downstream irrigation demands. In fact, the volumetric reliability index based on the
NHA is 5%, 8%, 17%, 18% and 31% greater than that based on the SA, BA, WA, PSO algorithm and
GA, respectively.

Table 9. Evaluation of different algorithms for irrigation demands based on different
indexes. NHA—new hybrid algorithm; SA—shark algorithm; BA—bat algorithm; WA—weed
algorithm; PSO—particle swarm optimization; GA—genetic algorithm; MOGA—multi-objective GA;
MOPSO—multi-objective PSO.

Index Equation NHA SA BA WA PSO GA MOGA MOPSO

Correlation Coefficient r =

T
∑

t=1
(Dt−Dt).(Rt−Rt)√

T
∑

t=1
(Dt−Dt)

2
.

T
∑

t=1
(Rt−Rt)

0.93 0.91 0.86 0.87 0.75 0.67 0.74 0.83

Root Mean Square Error (RMSE)
(106 m3) RMSE =

√
T
∑

t=1
(Dt−Rt)

2

T
5.1 7.2 8.8 9.3 10.5 11.8 9.6 8.7

Mean absolute Error
(106 m3) MAE =

T
∑

t=1
|Dt−Rt |

T
4.3 5.59 6.1 7.1 6.9 6.4 6.3 6.1

Volumetric Reliability Index% αV =

T
∑

t=1
Rt

T
∑

t=1
Dt

× 100 95% 90% 87% 78% 75% 64% 77% 79%

Resiliency Index% γi =
fsi
Fi

45% 40% 38% 35% 33% 29% 35% 34%

Vulnerability Index λ = MaxT
t=1

(
Dt−Rt

Dt

)
× 100 14% 20% 21% 23% 24% 25% 22% 21%

Dt: demand; Dt: average demand; Rt: released water; and Rt: average released water.
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Figure 9. (a) Released water for downstream irrigation and (b) power production for downstream
demand.
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Additionally, Reddy and Kumar [53] optimized this system based on the multi-objective GA
(MOGA) and multi-objective PSO (MOPSO) algorithms. These multi-objective algorithms can be
considered substitution strategies instead of weighting methods, and the structure and preparation
of such algorithms are complex. The results indicated that the NHA has a better performance than
the MOGA and the MOPSO algorithm; therefore, the volumetric reliability index for the NHA is
greater than that for the MOGA and the MOPSO algorithms. For example, the Pareto fronts are
shown in Figure 10. The marginal rate of substitution strategy [54] is used to select the best solution.
The marginal rate of substitution can be calculated based on sacrificing certain terms of the objective
function to improve the value of the other terms of the objective function. When one solution has
the maximum value of marginal rate of substitution, it is the most suitable solution; in other words,
the best solution has the highest slope for two objective functions in the Pareto front. When the MOGA
and the MOPSO algorithm are used, a large number of solutions can be observed; thus, the problem
must be simplified. Therefore, a simple clustering strategy is used to filter 200 solutions to 20 solutions.
First, there are N clusters, and the cluster ranges are calculated for all pairs of clusters; then, each two
clusters with the minimum range are combined to generate the large cluster. Finally, the solutions
with the minimum average distance from other solutions in the cluster are considered as alternative
solutions for clustering (Figure 10). The determined point blue is the optimal solution.Sustainability 2019, 11, x FOR PEER REVIEW 24 of 29 
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Figure 10. Pareto front for the algorithms. MOGA—multi-objective GA; MOPSO—multi-objective PSO.

The vulnerability index for the NHA was 12%, which was the lowest percentage among the
analyzed methods. The maximum intensity of the failure probability occurred with the NHA and
was less than that of other evolutionary algorithms. The greatest value of the vulnerability index was
related to the GA. Additionally, the NHA had a better performance than the MOGA and the MOPSO
algorithms based on the lower value of the vulnerability index.

Finally, the resiliency index of the NHA was 45%, which was the highest percentage among the
analysed methods; therefore, the multi-purpose system can escape more quickly from critical periods,
such as drought periods.

Figure 11 shows that the NHA has the smallest average annual deficit among the evaluated
methods. The average annual deficit for the NHA is 10%, 12%, 15%, 17%, and 18% less than that
for the SA, BA, WA, PSO algorithm, and GA, respectively. The historical water demand required
for various uses was recorded during an earlier time period, whereas the released water decision
pattern was calculated based on the achieved optimal operation rules from each algorithm based on
objective functions. Finally, a comparative analysis was carried out to identify the gap between the
water demand for the irrigation requirement and power production and the allocated water release.
The released water as a decision variable was calculated, and then the power generation was calculated
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based on released water; the resulting power produced was 106 kWh, which was then compared with
the actual power required for downstream demands.
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5.5. Computational Power Production

The downstream demand for power is 18.90 (106 kwh), and the average amount of produced
power based on the NHA is 18.08 (106 kwh), while it is 17.99, 17.32, 16.96, 16.32, and 15.34 (106 kwh)
for the SA, BA, WA, PSO algorithm, and GA, respectively (see Figure 6b). Thus, the NHA can produce
more power to supply the demand (Table 10). Additionally, the correlation coefficient for the NHA
is greater than that for other algorithms, and the root mean square error (RMSE) and mean absolute
error (MAE) have the smallest values in the NHA among the evaluated algorithms based on the
difference between demand and power production. Additionally, the NHA has a better performance
than the MOGA and the MOPSO algorithms based on the lower values for the error indexes and
higher correlation values.

Thus, the NHA can supply the irrigation demand first; then, the power production can be used
after the irrigation supply. Additionally, although the release of more water may generate more power,
a considerable deficiency in irrigation would result. Thus, more weight is assigned to the irrigation
objective function to ensure that the demand for irrigation is met; ensuring the necessary power
production is an additional concern for policymakers.

Table 10. Evaluation of different algorithms for irrigation demands based on different indexes.

Index Equation NHA SA BA WA PSO GA MOGA
(Reddy, 2006)

MOPSO
(Reddy, 2006)

Correlation Coefficient r =

T
∑

t=1
(Pdt−Pdt).(Pst−Pst)√

T
∑

t=1
(Pdt−Pobt)

2
.

T
∑

t=1
(Pst−Pst)

93% 90% 87% 75% 69% 65% 73% 75%

Root Mean Square Error
(RMSE)

(106 kwh) RMSE =

√
T
∑

t=1
(Pobt−Pst)

2

T
3.1 4.9 4.2 3.8 4.2 3.7 3.5 3.8

Mean Absolute Error
(MAE)

(106 kwh) MAE =

T
∑

t=1
|Pobt−Pst |

T
3.2 4.1 3.8 3.6 3.4 3.5 3.3 3.4

Pdt: power demand; Pdt: average power demand; and Pst: simulated produced power by algorithms.

6. Conclusions

The current research is dedicated to the implementation of a new hybrid intelligence model based
on integrating two meta-heuristic algorithms for optimizing the operation of a multi-purpose reservoir
water system. The optimization problem is solved to satisfy irrigation demands and hydropower
production for one case study in India. The capability of the BA is improved by hybridization with the



Sustainability 2019, 11, 1953 25 of 28

PSO algorithm based on local and global search strategies and the substitution of weaker solutions in
each algorithm with the best solutions of the other algorithms. The main idea behind the procedure of
the proposed NHA is to avoid the possible worst solutions using the BA and the resulting decline in
local optima; in addition, the NHA enhanced the convergence rate using the PSO algorithm.

After applying the proposed NHA for a multi-purpose reservoir water system, namely the Bhadra
Dam in India, it could be concluded that the NHA could provide a satisfactory improvement to
decreasing irrigation deficiencies. In quantitative terms, the average irrigation demand was 142.14
(106 m3), and the NHA can release 141.25 (106 m3), which represents a much higher level of accuracy
over comparable models. The average demand for power production is 18.08 (106 kwh), and the
produced power using the NHA is 17.99 (106 kwh), which represents the capability of the NHA for
applied applications.

It can be concluded that the proposed NHA as an intelligent model could contribute to providing
reliable solutions for complex multi-purpose reservoir systems to optimize the operation rule for
similar reservoir systems worldwide. In addition, the NHA could be integrated with other forecasting
models for additional reservoir hydrological variables to optimize its operation under different climate
change scenarios in future periods. Furthermore, the NHA could be used for multi-purpose reservoir
systems and other multi-purpose engineering optimization applications.

Although the proposed NHA showed superior performance over the other optimization
algorithms, it still experienced a challenge during initialization because several random parameters
must be initialized. This step may prolong the computational time for convergence. In addition to
the need to initialize the random parameters for the BA and PSO algorithms within the definition of
the NHA communication, a simultaneous procedure must also be adopted to update these random
parameters within the simulation model of the reservoir, and such requirements should be considered
when applying the NHA to other case studies.
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