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Abstract—The major issues on the wind measurement campaign 
are the data measured in a short period and the occurrence of 
missing data due to the failure of the measurement instrument. 
Meanwhile, Measure-Correlate-Predict (MCP) method had 
widely been used to predict the long-term condition and missing 
data at the measurement site based on nearest Malaysian 
Meteorological Department (MMD), Meteorological Aerodrome 
Report (METAR) and extended Climate Forecast System 
Reanalysis (ECFSR) data. In this research, the long-term wind 
data at selected potential sites in Malaysia were predicted by 
optimized Artificial Neural Networks (ANNs). The Genetic 
Algorithm (GA) was applied to optimize the ANN. Five different 
ANN MCP models had been designed based on different types of 
reference data and different temporal scales to predict wind 
data at three target sites. Weibull frequency distributions and 
RMSE examined predicted wind data. The prediction of ANN 
had been improved in between 20.562% to 113.573% by GA 
optimization. The best R-value obtained from optimization were 
affected the Weibull shape and scale of predicted data. At last, 
the result revealed that the optimized ANN model could predict 
the long-term data for the target site with better accuracy. 

Index Terms—Artificial Neural Network, Genetic Algorithm, 
Measure-Correlate-Predict, Meteorological data, Re-analysis 
data. 

I. INTRODUCTION 
The wind measurement campaign is essential to determine 

the wind quality of the potential site for virtous planning of 
any wind energy project. However, wind measurement 
campaigns generally conducted as minimum as a one-year 
duration due to the capital cost of wind project were mainly 
allocated for wind turbine generator (WTG). A few years wind 
data measured are inappropriate to estimate mean wind speed 
for a 20 years wind project’s site due to the inter-annual 
variability of wind speed. Moreover, it is difficult to prevent a 
missing data encounter in a wind measurement campaign, 
which caused by device failure or disconnection wind mast. A 
statistical method, Measure-Correlate-Predict (MCP) 
technique, had been proposed in the 1940s to predict the long-

term mean wind speed for a target site from a single reference 
site [1].  

The wind energy industry had been developed MCP 
method as a standard tool in software applications for long-
term wind speed forecast [1]. Established MCP models are 
mainly divided into two groups as a linear and nonlinear 
model. MCP algorithm such as linear fit, polynomial fit, 
quadratic fit, and matrix bins, those are commonly used linear 
MCP models as presented in [2]. Undeniable that not all 
reference sites have a linear nature with the target sites. In 
addition, the linear method is also sensitive to the outliers of 
the data [3]. 

Several new artificial intelligence (AI) approaches for 
wind speed, and power prediction has been established with 
the non-linear pattern in wind series. Indeed, the AI methods 
developed were included artificial neural network (ANN). 
ANN is a technique mainly used to map random input 
vector(s) to the corresponding random output vector without 
pre-assuming any fixed relationship between them. In other 
words, neural networks can learn from past data, recognise 
hidden patterns or relationships in historical observations and 
use them to forecast future values [4], [5]. As the results, it is 
not surprising that the neural network approach has attracted 
overwhelming attention in time series forecasting [6]. 
Additional advantages of the neural network approach over 
the conventional forecasting schemes include data error 
tolerance, ease in adaptability to online measurements, and 
lack of any excess information (other than time series history 
of wind speeds) [4], [5]. 

ANNs have been found to be better than various traditional 
time series models [6], [7]. It had documented that Lapedes 
and Farber [8] were the first utilised artificial neural networks 
to model the nonlinear time series. The neural networks seem 
to be performing well and extremely parsimonious in its 
requirements for data point from the time series. 
Consequently, various wind speed and power prediction or 
forecasts have been established with ANNs approaches. 
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More and Deo [4] employs two neural networks technique, 

back propagation neural network and recurrent neural 
network, to forecast daily, weekly and monthly wind speed. 
The network forecasting was reasonably close to the 
corresponding measurements than traditional stochastic time-
series model of ARIMA. The forecasting interval reduced, 
from monthly to daily, forecasting accuracy decreased due to 
the overfitting or large training patterns.  

Chang [9] proposed back propagation neural network for 
wind power forecasting based on 2400kW Wind Energy 
Conversion Systems (WECS) in Taichung coast. The 
established model was forecasting wind power every 10 min 
and verified by the historical power generation data. The 
numerical results show that the proposed forecasting method 
is accurate and reliable. However, the determination of some 
neurons in hidden layer was based on trial-and-error method. 

Li and Shi [5] examined wind speed forecasting based on 
three types of conventional neural networks and evaluated by 
three different kinds of metrics. There are no single neural 
networks models met all evaluation metrics. In other words, 
the selection of a best-performing model for a dataset with 
different evaluation criteria is not appropriate. 

Addision et al. [10] investigated the feasibility of using 
neural networks to make predictions of long-term energy at a 
target site. In the research, wind speed and direction from one 
reference station is using to study the effectiveness of neural 
networks in the prediction of wind speed at a target site. The 
accuracy of the prediction improved 5-12% by comparing 
with standard MCP algorithms, and the best results were 
obtained using multilayer perceptron networks with numerous 
hidden units.  

Bechrakis et al. [11] present an ANN method to simulate 
time series of 1-year data at the target site with 1-month and 2-
month concurrent data from target sites. Mean values, Weibull 
distribution parameter and cross-correlation coefficient had 
been executed; and the results indicated that ANN 
accomplished to estimate 1-year data at the target site with 1-
month and 2-month concurrent data.  

The originality of this paper lies on the optimized ANN 
method for MCP algorithm for long-term data prediction for 
target site in Malaysia. Besides, different types of long-term 
data forms reference site which are meteorological data 
obtained Malaysian Meteorological Department (MMD), 
Meteorological Aerodrome Report (METAR) wind data, and 
extended Climate Forecast System Reanalysis (E-CFSR) data 
were examined for the prediction of data in target side. 
Weibull distribution, correlation coefficient, and root mean 
squared error (RMSE) were executed between both predicted 
and measured data as a tool to examine the predicted wind 
data. 

II. CASE STUDY: WIND ASSESSMENT PROJECT IN 
MALAYSIA 

Target sites in this study which referred to the measured 
sites under a wind assessment project conducted by Universiti 
Malaysia Terengganu. Five potential sites had been measured 
in this project were Kijal, Kuala Terengganu, Kudat, 

Langkawi, and Mersing. Wind speed were measured in ten 
minutes interval, and its average to hourly and daily for the 
suitable scale of concurrent data used. Long-term concurrent 
data used, MMD data, METAR data and E-CFSR data were 
described in the next subsection. Meanwhile, Kijal and 
Langkawi sites were not discussed in this paper due to lacking 
nearest concurrent data of MMD data and METAR data. The 
concurrent period of the data or measured period for the sites 
respectively as below: 

• Kuala Terengganu: October 2011 until November 
2013 (26 months) 

• Kudat: October 2012 until May 2015 (32 months) 

• Mersing: October 2012 until April 2015 (31 months) 

A. Concurrent Long-term Data 
1) MMD Data 

Existing local historical meteorological wind data always 
as the reference for wind energy studies [12], [13]. Hence, the 
meteorological data in this study were obtained from the 
Malaysian Meteorological Department (MMD). The 
concurrent MMD data were in the scale of daily data. Besides 
wind data, the air temperature and pressure data used in this 
research also obtained from MMD.  

2) METAR Data 
METAR is known as the international meteorological code 

for an aviation routine weather report or Meteorological 
Aerodrome Report. METAR observations usually are taken 
and disseminated on the hour [14]. METAR wind data are 
observed from surface observing (METAR) stations and 
frequently used for long-term reference data. METAR stations 
in Malaysia are located at airports and observations are usually 
collected at hourly increments at the height of 10 meters above 
ground level (m.a.g.l) [15]. The concurrent METAR data were 
in the scale of hourly and downloaded via WindPRO software.  

3) E-CFSR Data 
The NCEP Climate Forecast System Reanalysis (CFSR) 

was designed and executed as a global, high resolution, 
coupled atmosphere-ocean-land surface-sea ice system to 
provide the best estimate of the state of these combined 
domains over a 31-year period from 1979 to 2009 [16]. It was 
initially completed in January 2010 and has also been 
extended as an operational, real-time product into the future. 
The extended CFSR (E-CFSR) is 0.5 degree of spatial 
resolution, temporal resolution is 1 hour, and the period from 
1979 until present. The CFSR-Extended dataset may suffer 
from inconsistencies if periods before and after the end of 
2010 [16]. The concurrent E-CFSR data were in the scale of 
hourly and downloaded via WindPRO software. 

III. METHODOLOGY 

A. Data Pre-processing and Data Normalisation 
All data were normalized to produce the data within the 

range of 0 to 1 by min-max scaling technique. The input and 
output of the ANN were normalized to minimize the error 
which caused by the high range value of the dataset. Min-Max 
Normalization, which shown in (1). 
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x'=
(xi-xmin)

(xmax-xmin) (1) 

where xmax is the maximum value of the data, xmin is the 
minimum value of the data and xi is the data value need to be 
normalized. 

The zero value which obtained from the prediction of 
ANN would affect the Weibull fitting. These zero values were 
substituted by the value 0.03 m/s which considered as calm or 
no wind condition. 

B. Design of Artificial Neural Network (ANN) 

 

 

 

 

 

Figure 1.   Architecture of Artificial Neural Network. 

MCP models in this paper were designed based on 
Multilayer Perceptron (MLP) with a single hidden layer. A 
supervised MLP with input and output nodes also known as 
Feed-Forward Neural Networks (FFNN). Five different 
designs of the MCP were shown in Fig. 1 and the description 
as below respectively: 
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• MCP1: MCP model that concurrent data was MMD 

daily data. The input and output nodes were daily 
MMD wind speed at the reference site and daily wind 
speed at the target site. 

• MCP2: MCP model that concurrent data was MMD 
daily data. The input nodes were daily MMD wind 
speed, air temperature, and pressure at a reference 
site; and output node was daily wind speed at the 
target site. 

• MCP3: MCP model that concurrent data was METAR 
hourly data. The input and output nodes were hourly 
METAR wind speed at the reference site and hourly 
wind speed at the target site. 

• MCP4: MCP model that concurrent data was E-CFSR 
hourly data. The input and output nodes were hourly 
E-CFSR wind speed at the reference site and hourly 
wind speed at the target site. 

• MCP5: MCP model that concurrent data was E-CFSR 
hourly data. The input nodes were hourly E-CFSR 
wind speed and wind direction at four nearest 
reference sites, and output nodes were hourly wind 
speed and wind direction at the target site. 

Levenberg-Marquardt backpropagation function was the 
training algorithm, and the gradient descent with momentum 
function was the learning function for the weight and bias. 
Meanwhile, the transfer function and the number of neurons in 
hidden layer were optimized by Genetic Algorithm (GA) 
optimization method. The combination of the transfer function 
for the hidden layer and output layer were selected between 
Linear, Tan-Sigmoid and Log-Sigmoid. The ranges of the 
number of neurons were calculated by the (2): 

n=�ni+no+α (2) 

Where, n is the number of neurons in the hidden layer, ni 
is the number of input neurons, no is the number of output 
neurons, and α is a number between 1 and 10.  

C. Genetic Algorithm Optimisation of ANN 

 

Figure 2.   Flowchart of GA-FFNN. 

The core idea of GA-FFNN is to obtain the initial weights 
and biases of FFNN by optimising the transfer function and 
the number of neurons for the hidden layer to increase the 
accuracy of the prediction. The flow chart of the proposed 
GA-FFNN is shown in Fig. 2, and the calculation steps GA-
FFNN are as follows: 

Step 1. Determine the neuron number of the input layer, 
the output layer, the learning and the training function of 
FFNN respectively as described in the previous section.  

Step 2. Set the population and generation size of GA 
optimization of FFNN were 100 and 50 respectively. 

Step 3. Randomly set the lower and upper bound of the 
number of hidden layers and the combination of transfer 
functions and randomly generate the value or combination 
within the range.  

Step 4. Initial position of the weight and biases of FFNN. 
Input training samples for calculating.  

Step 5. Calculate the output of FFNN, subsequently, 
calculate the fitness evaluation of GA which set to minimize 
the uncorrelated data, (1-R).  

Step 6. Selection of the best individual in the population, 
cross over, then mutated. The best and mean optimized results 
and plotted in the GA optimization best plot. 

Step 7. Examine whether the maximum generation of GA 
has been reached, if it is not reached, loop back to step 3 

Step 8. Long-term prediction of FFNN and saved results 

D. Weibull Distribution 
For statistical analysis of wind data, a probability 

distribution is a term that describes the likelihood that certain 
values of random wind speed will regime. In this case, 
Weibull distribution became a tool to examine the predicted 
wind data by comparing the k and c Weibull parameters for 
both predicted and measured data. The probability density 
function F(v), indicates the fraction of probability for which 
the wind is at a given velocity v. It is given by: 

F(v)= �
k
c
� �

v
c
�

k-1
exp �- �

v
c
�

k
� 

(3) 

he Weibull factor k and c can also be estimated from the 
mean and standard deviation of wind data [17]. 

k= �
σV

Vm
�

-1.086
 

(4) 

c=
Vm

Γ �1+ 1
k�

 (5) 

Where the Γ(x)  = gamma function, Γ(x)=∫ tx-1e-tdt∞
0    

The mean and standard deviation were calculated by the 
equation below: 

Vm=
∑ vi

n
i=1

n
 

(6) 
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σV=�
∑ (vi-Vm)2n

i=1

n
 

(7) 

E. Root Mean Squared Error (RMSE) 
RMSE is a quadratic scoring rule which measured the 

average magnitude of the error. The RMSE gives a relatively 
high weight to large errors because of the errors is squared 
before averaged and the was shown its relevant mathematical 
expressions [5].  

RMSE=�
∑ �xi-yi�

2n
i=1

n-1
 

(8) 

where xi, is the measured wind speed; yi, is the forecasted 
wind speed and n, is the number of samples. 

IV. RESULTS AND DISCUSSION 
The objective function of GA is to minimize the 

uncorrelated data and increase the accuracy of prediction by 
controlling the number of neurons in hidden layer and 
combination of the transfer function in ANN. The 
optimization of GA achieved once the mean value of the 
fitness evaluation met the best fitness evaluation value. 
Results obtained that maximum generation set was sufficient 
for GA optimization, which the mean fitness evaluation value 
met the best fitness evaluation value within 50 generations, 
Fig. 3. In addition, the mean fitness evaluation values 
remained constant once met the best fitness evaluation values. 
The percentages of optimizations were in the range of 20.562 
– 113.573 %, Tab. 1. 

 

a) Kuala Terengganu 
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b)Kudat

 
c) Mersing 

 

Figure 3.  Optimization results. 
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a) Kuala Terengganu 

 
b) Kudat 

 
c) Mersing 

 

Figure 4.   Weibull distribution plot.
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TABLE I.  CORRELATION COEFFICIENT, WEIBULL SCALE AND SHAPE PARAMETER, AND RMSE 

Site Model 
Optimization Weibull Target Site data Weibull ANN Simulated data 

RMSE Initial 
R 

Best R 
obtained 

Percentage 
Optimized (%) 

Scale 
Parameter 

(m/s) 

Shape 
Parameter 

Scale 
Parameter 

(m/s) 

Shape 
Parameter 

Kuala Terengganu 

MCP1 0.760 0.916 20.562 1.968 1.425 2.003 1.562 0.577 

MCP2 0.734 0.925 26.104 1.968 1.425 1.906 1.480 0.550 

MCP3 0.540 0.751 38.933 3.109 1.517 1.676 1.671 1.959 

MCP4 0.290 0.522 79.782 2.237 1.169 3.002 2.732 1.663 

MCP5 0.351 0.682 94.000 2.237 1.169 2.385 1.794 1.353 

Kudat 

MCP1 0.538 0.832 54.615 2.998 2.433 3.006 2.894 0.628 

MCP2 0.564 0.878 55.632 2.998 2.433 2.992 2.822 0.541 

MCP3 0.177 0.287 61.986 3.124 1.962 1.852 4.409 1.775 

MCP4 0.352 0.576 63.961 3.175 1.914 3.036 2.877 1.272 

MCP5 0.375 0.695 85.595 3.175 1.914 3.123 2.523 1.110 

Mersing 

MCP1 0.760 0.922 21.284 2.614 1.789 2.581 1.768 0.545 

MCP2 0.766 0.938 22.598 2.614 1.789 2.518 1.745 0.532 

MCP3 0.290 0.618 113.573 4.288 2.653 3.878 3.997 1.288 

MCP4 0.331 0.581 75.773 2.581 1.182 3.465 3.727 1.659 

MCP5 0.358 0.643 79.664 2.610 1.230 2.791 2.379 1.316 
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Weibull distribution, Fig. 4, shown that the predicted data 

for MCP1 and MCP2 had similar distribution pattern with the 
target sites data. However, MCP3, MCP4 and MCP5 had 
different distribution pattern with the target sites data. Table 1 
summarized the Weibull shape and scale parameters for target 
site data and predicted data as well as the RMSE.  

The results reveal that prediction of wind data with MMD 
data, MCP1 and MCP2, given greater accuracy, which the best 
R and RMSE were in the range 0.832 – 0.938 and 0.532 – 
0.628 respectively. The high accuracy of R-value obtained 
compare to MCP3, MCP4, and MCP5 were due to the scale of 
the data which MCP1 and MCP2 were daily data. 
Meteorological data, air temperature and pressure added into 
the model, MCP2, had been increased the accuracy of the 
prediction, were R-value for MCP1 were in the range of 0.832 
– 0.922 compared to MCP2 were 0.878 – 0.938.  

MCP model which based on hourly data, MCP3, MP4 and 
MCP5, ECFSR data shown better correlation compared to 
METAR data except for sites Kuala Terengganu. These are 
due to the METAR reference site for Kuala Terengganu were 
nearest to the target site compared to three other target sites. 
Model with four ECFSR reference sites, MCP5, had improved 
the accuracy of the prediction compared to MCP4 with one 
ECFSR reference site. The best R and RMSE for MCP4 and 
MCP5 were respectively in the range 0.522 – 0581 and 0.634 
– 0.695; 1.272 – 1.663 and 1.110 – 1.353.  

Indeed, the best R - value obtained from optimization were 
affected the Weibull shape and scale of predicted data. These 
had been clearly shown by Weibull shape and scale parameter 
for MCP1 and MCP2 were closer to target sites data than 
MCP3, MCP4 and MCP5. The Weibull scale and shape 
parameter for MCP1 and MCP2 simulated data were in the 
range 2.003 – 3.006 and 1.562 – 2.894; 1.902 – 2.992 and 
1.480 – 2.822 respectively, while the target sites data were 
1.968 – 2.998 and 1.425 – 2.433. On the other hand, the 
lowest R best value, MCP3 at Kudat site, made the Weibull 
shape parameter for simulated data extremely higher than 
others, 4.409. 

V. CONCLUSION 
GA optimization achieved within 50 generations, the 

maximum generations; and the percentage of optimizations 
were in the range of 20.562 – 113.573 %. Prediction of wind 
data with daily MMD data, MCP1 and MCP2, given greater 
accuracy than hourly METAR and ECFSR data, which the 
best R and RMSE were in the range 0.776 – 0.938. The best 
R-value obtained from optimization were affected the Weibull 
shape and scale of predicted data. As the conclusion, the 
optimized ANN model could predict the long-term data for the 
target site with better accuracy. 
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