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ABSTRACT In this paper, the dynamic deployment of a single UAV as an aerial base station in providing
wireless coverage for mobile outdoor and indoor users is studied. The problem of finding the efficient UAV
trajectory is formulated with the objective to minimize the required UAV transmit power that satisfies the
users’ minimum data rate. The proposed solution to the problem considers the users’ movement in a search
and rescue (SAR) operation. More specifically, the outdoor rescue team members are considered to move in
a group with the reference point group mobility (RPGM)model. Whilst, the indoor rescue teammembers are
considered to move individually and in a group with random waypoint and RPGMmodels, respectively. The
efficient UAV trajectory is developed using two approaches, namely, heuristic and optimal approaches. The
employment of the heuristic approach, namely particle swarm optimization (PSO) and genetics algorithm
(GA), to find the efficient UAV trajectory reduced the execution time by a factor of ' 1/60 and ' 1/9
compared to that when using the optimal approach of brute-force search space algorithm. Furthermore,
the use of PSO algorithm reduced the execution time by a factor of ' 1/7 compared to that when the
GA algorithm is invoked.The performance of the dynamic UAV deployment also outperformed the static
UAV deployment in terms of the required transmit power. More specifically, the dynamic UAV deployment
required less total transmit power by a factor of about 1/2 compared to the static UAV deployment, in
providing wireless coverage for rescue team to perform SAR operation within a rectangular sub-region.

INDEX TERMS Genetic algorithm, particle swarm optimization, random waypoint, reference point group
mobility model, unmanned aerial vehicles.

I. INTRODUCTION
Recently, Unmanned Aerial Vehicles (UAVs) have been used
in many civilian applications, such as real-time monitoring,
infrastructure inspection, remote sensing, search and rescue
operations, delivery of goods, surveillance, precision agricul-
ture, and to assist in providing wireless coverage [1].

UAV can be used as an aerial base station as a supple-
ment to the existing terrestrial base station when the wireless
network is overloaded during a massively crowded special
event, or to provide reliable communications for ground users
when the infrastructure of the terrestrial base stations are
damaged due to natural disasters, such as tsunami, floods
and earthquake [1], [2]. Furthermore, the deployment of UAV
as an aerial base station that operates at an altitude that is
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referred to as low altitude platform (LAP), provides higher
chances of line-of-sight (LOS).Whilst, its ability to adjust the
altitude and mobility enables UAV to provide reliable mobile
network connectivity by considering the ground users’
movement.

A. RELATED WORKS
Many researches propose strategies of deploying UAV by
optimizing objective functions that have different aims [1],
namely, minimizing the transmit power of UAVs [3], [4],
maximizing the wireless coverage of UAVs [5], minimizing
the number of UAVs required to perform a given task [6],
and optimizing UAV trajectory [7]. Technical issues, such
as endurance time is an important issue to be addressed
as the duration of UAV mission is lengthened [1]. Therefore,
the efficient 3D deployment of UAV strategies to minimize
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FIGURE 1. Deployment strategies classification using UAV as an aerial base station.

the UAV transmit power in providing wireless coverage to the
ground users, have been addressed in [3]–[9].

The deployment of UAV as an aerial base station in provid-
ing wireless coverage to the ground users can be classified
into two categories, based on either UAV in static condi-
tion or UAV in moving condition, which may be referred to
as static deployment, or dynamic deployment, respectively.
Within each of the category, the research can be further
classified based on the locations of the ground users. More
specifically, the UAV is deployed to provide wireless cover-
age for either outdoor ground users only, indoor ground users
only or outdoor and indoor ground users simultaneously,
as illustrated in Figure 1.

In the case of static UAV deployment, there are many
works that consider the UAV as an aerial base station in
providing wireless coverage for outdoor ground users only
[3], [6]. More specifically, the authors in [3] studied the UAV
deployment in an optimal altitude that minimizes the required
UAV transmit power and maximizes the wireless coverage.
In [6], the strategy of deploying multiple UAVs with the
objective of minimizing the required UAV transmit power in
providing wireless coverage over a large area was studied.
In this paper, it was proposed to utilize Circle Packing Theory
(CPT) in order to find the minimum number of UAVs to be
deployed in such that the coverage area and coverage density
were maximized.

Whilst, authors in [4], [12], [13] studied the UAV deploy-
ment strategies as an aerial base station in providing wireless
coverage for indoor ground users only. More specifically,
they utilized the Outdoor-to-Indoor path loss model presented
in [14] to find an efficient 3D UAV location that minimizes
the total UAV transmit power required to provide wireless
coverage indoor users during disaster situations. In [5] the
UAV deployment strategy in finding the minimum number of
UAVs required to provide wireless coverage for indoor users
only was presented. Meanwhile, the static UAV deployment
that provides coverage for both indoor and outdoor users are
presented in [8]. More specifically, in [8] the Air-to-Ground
(ATG) path loss model of [15] and the Outdoor-to-Indoor
path loss model [14] were utilized in finding the efficient 3D

placement as an aerial base station that minimized the UAV
transmit power.

However, some of the works on the UAV deployment
strategies that consider dynamic scenarios can be found in
[7], [9]–[11], [16]. The authors in [7], studied UAV trajectory
optimization problem that addressed the energy-efficiency of
UAVs. This work proposed a theoretical model of propulsion
energy consumption for a fixed-wing UAV that considers
both its velocity and acceleration. Optimal UAV trajectories
that consider a dynamic network scenario was studied in [16].
Furthermore, this work utilized quantization theory as an
analytical tool to characterize the achievable performance of
the UAVs, as mobile aerial base stations.

For the dynamic UAV deployment scenario, the works in
[9], [11], optimized 3D UAV placement by considering the
users’ movement. This is because user movement can affect
the wireless network performance if the optimized UAV
placement is determined based on a specific configuration
only. In [9], the dynamic UAV deployment problem was con-
sidered in the context of multiple UAVs as aerial base stations
for data collection from the ground Internet of Things (IoT)
devices in an uplink communication scenario. The proposed
algorithm aimed for an optimized 3D trajectory for each UAV
with the objective of minimizing the total power used for
the UAVs mobility. In this work, the IoT active devices were
considered to exhibit beta distribution. Similarly, the dynamic
multi-UAVs deployment was also considered in [10]. More
specifically, in [10] the authors considered problem in finding
optimal trajectory paths with the objective of maximizing the
minimum average sum rate by jointly optimized the power
allocation and paths of multi-UAVs, user association and
scheduling. Whilst, in [11], the authors used random walk
model to represent the users’ movement, and proposed the
solution to find the 3D positioning of aerial base stations
using reinforcement learning, which is known as Q-learning.

A more comprehensive survey and tutorial on UAV com-
munications, namely, cellular-connected UAVs and UAV-
assisted wireless communications, which highlights the
deployment of UAVs as an aerial communication platform for
outdoor users is presented in [17]. With regards the dynamic
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UAV deployment scenario, a unified and general mathemati-
cal framework for designing a joint UAV communication and
trajectory, is also presented in [17]. However, these studies
assumed that all users are located outdoor. More specifically,
to the best of our knowledge, all previous studies on the
dynamic UAV deployment do not consider the case of pro-
viding wireless coverage for indoor users.

Therefore, in this paper we study the dynamic deployment
of a single UAV as an aerial base station in providing wireless
coverage for a rescue team in search and rescue (SAR) oper-
ation during emergency cases or natural disasters. The UAV
is deployed as an aerial base station in providing continuous
wireless coverage for mobile outdoor and indoor users. More
specifically, in this work we propose an algorithm to find an
efficient UAV trajectory in providing wireless coverage for
mobile users thatminimizes the total UAV transmit power and
satisfy the minimum user’s required data rate. Furthermore,
we consider two different user’s movement, namely indi-
vidual movement and group movement. More specifically,
the random waypoint [18] is used to model the individual
movement, whilst, the group movement is modeled using
reference point group mobility model (RPGM) [19]. The
random waypoint model is used to represent the movement
of the rescue team member that is located indoor, whilst,
the RPGM model is used to represent the movement of the
rescue team members that are located indoor and outdoor.

B. PAPER CONTRIBUTIONS
The contributions of this work are summarized as follows:
• Two different user’s mobility models are used to repre-
sent the rescue team member’s movement inside the tar-
geted coverage area. The outdoor rescue team members
are considered to move in a group with RPGM model.
Whilst, the indoor rescue team members are considered
to move individually and in a group with random way-
point and RPGM models, respectively.

• The efficient UAV trajectory algorithms are developed
for the deployment of a single UAV as an aerial base
station in providing wireless coverage for mobile out-
door and indoor users. More specifically, particle swarm
optimization (PSO) and genetic algorithm (GA) are uti-
lized to find the efficient UAV trajectory that provides
continuous wireless coverage for the mobile rescue team
members in a SAR operation. The problem is formu-
lated with the objective of minimizing the required UAV
transmit power that satisfies the minimum users’ data
rate while considering the outdoor and indoor users’
movement with random waypoint and RPGM models.

• The optimal UAV trajectory algorithm is developed
using brute-force search space method. The employ-
ment of heuristic algorithms in finding an efficient UAV
trajectory that minimizes the required UAV transmit
power while considering the users’ movement signifi-
cantly reduced the execution time, and hence, significant
reduction of computation complexity, when compared
with the optimal UAV trajectory algorithm.

The rest of this paper is organized as follows. Section II
presents the system model which includes the ground users’
mobility models and the communication channel models for
outdoor and indoor users. In Section III, the problem of
finding an efficient trajectory of UAV to provide a con-
tinuous wireless coverage for mobile users is formulated
as an optimization problem. Next, Section IV presents two
different solutions, namely the optimal and efficient UAV
trajectory algorithms based on an exhaustive search method
and heuristic algorithms, respectively. The simulation results
are presented in Section V-A. Whilst, Section V-B discusses
the main observations obtained from the simulation results.
Finally, the conclusions are presented in Section VI.

FIGURE 2. System settings of a subarea coverage using a single UAV. The
dimensionalities of the axes are meters.

II. SYSTEM MODEL
Consider a rectangular geographical area where the nat-
ural disaster occurs, D ⊂ R2 that is divided into N
subareas, denoted as S, with minimum and maximum
points of (xmin,ymin) and (xmax ,ymax), respectively as illus-
trated in Figure 2. Each subarea, S is further divided into
n sub-regions, namely, k1, k2, k3, . . . kn where kn denotes a
sub-region with n denoting the index of each sub-region.
Within each sub-region, kn, there areMout of outdoor mobile
ground users andMin of indoor mobile ground users, that are
uniformly distributed.

In this model, it is considered that a single UAV serves as a
mobile aerial base station in order to complete SAR operation
for each subarea, S . The 3D location of UAVi is represented
by (xi, yi, zi) where (xi, yi) is the 2D placement of UAVi and
zi is the altitude of UAVi. The UAV can dynamically move
to serve the users in the downlink communication link using
frequency division multiple access (FDMA) as the channels
access technique. In this model, it is assumed that the UAV
allocates equal channel bandwidth to each mobile ground
user, in order to avoid interference. Whilst, the ground users
are considered to move individually and in a group, with the
random waypoint and RPGM models, respectively.

More specifically, in the RPGM model, all users in the
group follow the motion of the reference point (RP) as
explained in Section II-A.2. Furthermore, in this proposed
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model, we assume that the users are distributed uniformly
around the RP within a given rectangular area, referred to
as a sub-region, kn. Additionally, based on this model the
users move in a group from one rectangular sub-region to
another rectangular sub-region, and the behaviour of the
group motion is defined by the RP motion parameters. Simi-
larly, we also assume the users thatmove individually with the
random waypoint model are also distributed uniformly and
confined within the rectangular sub-region, at each time step.
Thus, this proposedmethod is limited to the scenario in which
users are distributed uniformly within a specific sub-region,
at each time step.

A. GROUND USERS’ MOBILITY MODELS
Mobility models describe different types of user’s moving
behaviours or node mobility patterns within a variety of
network scenarios. There is a large variety of mobility models
in the literature [18]–[22], which can be categorized into
individual user/node movement models and group movement
models. The mobility models such as RandomWalk or Brow-
nian motion, Probabilistic RandomWalk [20], RandomWay-
point [18], Random Direction [21], Gauss-Markov [20] and
Weighted Waypoint [22] are among the models that describe
individual user moving behaviours. Whilst, examples of the
mobility models that describe group moving behavior are
RPGM [19], Column Mobility Model, Nomadic Mobility
Model, and Pursue Mobility Model [20]. As mentioned ear-
lier, in this paper, we consider the ground users are the rescue
team members in SAR operation that move individually,
as well as, in a group. More specifically, it is considered that
some of the indoor rescue team members move individually
with random waypoint model, whilst, some of them move
in a group with RPGM model. Meanwhile, the rescue team
members that are located outdoor move in a group with
RPGM model.

1) RANDOM WAYPOINT
In the random waypoint mobility model, the mobile users
move freely and randomly without any restrictions. It is
an extension of random walk model. More specifically,
the speed, direction and destination are chosen randomly and
independent of other users [18]. In this mobility model the
users are initially distributed randomly. The users’ movement
in this mobility model can be described as follows: 1) Each
user randomly chooses the destination, which is referred to
as waypoint; 2) The user’s velocity is chosen randomly from
the interval of [Speed_min, Speed_max] that is uniformly
distributed; 3) Each user moves towards its chosen destina-
tion; 4) After the user reaches the destination, it stopped for
a constant pause time. This movement describes the user’s
behaviour that stays at a location for a certain time before
it moves to a new destination. 5) Then, the user chooses the
next destination and step 1-4 are repeated again until the users
reach stationary distribution [23].

2) REFERENCE POINT GROUP MODEL
The RPGM model [19] is one of the group mobility models.
In this model, each group has its logical reference center,
which is referred to as reference point (RP), and all users
in the group follow the RP movement. More specifically,
the motion of group RP defines the behavior of the group
motion, including other motion parameters such as speed,
location, direction and acceleration. Therefore, the trajectory
of the group is determined based on the logical reference
center motion. The users are distributed uniformly around the
reference center within the geographical area of the group.
At each time step, the users’ movement within the geographic
scope of the group follow the RP and the locations of each
node is randomly placed around the RP.

The RPGM mobility model can be used to describe users’
movement for many scenarios, such as in military battlefield
communications and during disaster recovery in SAR opera-
tions. In these scenarios, users move towards a target with a
common objective, thus creates a collective movement of all
users.

The RPGM consists of reference point (reference center)
and users within the area, which may be referred to as group
nodes. The key elements of RPGM model can be described
as follows:
• Reference point: In this model, the reference point leads
the groupmovement, and it represents themotion pattern
for the group. Vector

−−→
Vg(t) represents the reference point

movement of the group at time t and speed s. The path
of the vector

−−→
Vg(t) can be chosen randomly or based on

predefined trajectory. In this work, the path of the vector
based on a predefined trajectory is considered.

• Group nodes: Group nodes refer to users within the
geographical area of the group. For node i, at time t , its
motion vector

−→
Vi(t) can be described as follows:
−→
Vi(t) =

−−→
Vg(t) + Ri(t) (1)

where Ri(t) is the group motion vector of node i, and
−−→
Vg(t) is the reference point motion vector.

Figure 3 shows an example of RPGM model scenario.
In this figure, the reference point, RP moves based on a
predefined trajectory from RP1 at time t1 to RP2 at time
t2. More specifically, RP1, RP2, . . . RPi, are new reference
point with i denoting the index of each check point. The
new check point at time t2, the locations for group nodes are
generated based on random distribution function around RP2.
The group continues to move towards RP3, RP4 and RP5, and
at each of the new check point, the group nodes’ location are
also generated based on random distribution function within
the geographic scope of the group.

B. CHANNEL MODELS
1) AIR TO GROUND CHANNEL MODEL
In this paper, the ATG path loss of [15] is utilized. The ATG
path loss is modelled by considering the probability of LOS
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FIGURE 3. An example of the RPGM model with predefined trajectory.

and Non-Line of Sight (NLOS) links. The probability of LOS
can be formulated as:

PLOS =
1

1+ α exp(−β[θ − α])
(2)

where α and β are two constants depending on the envi-
ronment type. θ is the elevation angle of the UAV, where

θ = sin−1(
h
d
), h is the altitude of UAV, and d is the distance

between ground user and the UAV, where d =
√
r2 + h2,

with r denoting the distance between UAV projection at xy
plane and the ground user, as shown in Figure 4. Whilst,
the NLOS probability is given by PNLOS = 1− PLOS .

FIGURE 4. UAV Coverage Zone.

The ATG pathloss in dB can be represented as [15]:

PLout (dB) = FSPL + PLOS × ηLOS + PNLOS × ηNLOS , (3)

The free space pathloss, FSPL is given as:

FSPL = 20log(
4π fcd
c

) (4)

where fc is the carrier frequency, c is the speed of light, whilst
ηLOS and ηNLOS are the average additional loss to the free
space propagation for LOS and NLOS links, respectively,
which depend on the environment.

2) OUTDOOR TO INDOOR CHANNEL MODEL
In the case of providing wireless coverage for rescue team
members that are located indoor, the path loss model for
Outdoor-to-Indoor certified by ITU [14] is considered, which
can be described as:

PLin(dB) = PLF + PLB + PLIN , (5)

where the free space path loss, PLF is given as 20log(d3d )+
20log(fc) + a1, the building penetration path loss, PLB =
a2 + a3 · (1 − cosθ )2, and the indoor path loss, PLIN
is given by a4 · d2din , whilst d3d is the euclidean dis-
tance between the indoor user i and the UAV, fc is the
carrier frequency, θ is the incident angle, and d2din is
the 2D indoor distance between user i and the UAV, a1,
a2, a3, a4 are constant values that depend on the environ-
ment. In this work, a1 = 32.4, a2 = 14, a3 = 15, a4 = 0.5
are used.

III. PROBLEM FORMULATION
In this problem, we consider a single UAV that provides
continuous wireless coverage toMout outdoor andMin indoor
ground rescue team members within a subarea that has a
rectangular shape with the minimum and maximum points
of (xmin,ymin) and (xmax ,ymax), respectively. Here, we analyze
the SAR operation that takes place within a time interval of
[0,T ]. The rescue team reaches ymax at time T , where T is the
time period required to complete the SAR operation within a
subarea. As mentioned earlier, there is n sub-regions in each
subarea, S. Therefore, there are T = n × tn where n is the
number of sub-regions for each subarea and tn is the time
required for the SAR operation to complete within each sub-
region with n denoting the index of each sub-region.
The outdoor and indoor rescue team members are dis-

tributed uniformly within a sub-region with the minimum and
maximum points of (0,ytn ) and (xmax , ytn+1 ). More specifi-
cally, at each time step tn, the rescue team members move
from ytn to ytn+1 , with n denoting the index of each sub-region.
Figure 2 illustrates these parameters, whilst, the blue dots
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denote outdoor rescue team members, and red crosses denote
the indoor rescue team members.

The total required UAV transmit power at time t that sat-
isfies the minimum data rate r for all rescue team members
can be formulated as:

Pt (t) =
Mout∑
i=1

[(2
r .Mout
B − 1)× N × PLout_i(t)]

+

Min∑
j=1

[(2
r .Min
B − 1)× N × PLin_j(t)], (6)

where B is the total available bandwidth, PLout_i is the path
loss between the UAV and the outdoor rescue team member,
i and PLin_j is the path loss between the UAV and the indoor
rescue team member, j, whilst, N is the noise power.
Our objective is to find an efficient UAV trajectory in pro-

viding continuous wireless coverage for rescue team mem-
bers by minimizing the total required UAV transmit power
in such that the required data rate is satisfied. This trajectory
allows UAV to track the rescue team members’ movement
during SAR operation, while, it operates as an aerial base
station at an efficient 3D placement.

As we can see in Equation (6) the terms (2
r .Mout
B − 1)× N

and (2
r .Min
B − 1)×N are constant, so the formulated problem

can be simplified as follow:

minimize
xut ,yut ,zut :t∈T

PL ttotal =
Mout∑
i=1

PL tout_i +
Min∑
j=1

PL tin_j (7a)

subject to
Mout∑
i=1

PL tout_i +
Min∑
j=1

PL tin_j≤ PLmax (7b)

0 ≤ t≤ T (7c)

xmin ≤ xiUAV (t)≤ xmax (7d)

ymin ≤ yiUAV (t)≤ ymax (7e)

zmin ≤ ziUAV (t)≤ zmax (7f)

The first constraint guarantees that the total path loss
does not exceed the maximum acceptable path loss, PLmax .
The second constraint ensures that the time slot for each sub-
region does not exceed the total time, T . The last three con-
straints ensure that the 3D placement xu, yu and zu of UAV is
within the range of theminimum andmaximumvalues. In this
contribution, we propose the following heuristic approach to
solve this problem:

1) The subarea S is divided into n sub-regions kn =
1, 2, . . . , n, where kn denotes a sub-region with n
denoting the index of each sub-region. Each sub-
region, kn has a minimum and maximum points of
(0, ytn ) and (xmax , ytn+1 ), respectively. More specifi-
cally, the length of each sub-region, is defined as ln =
ytn+1 − ytn . Then, the location of rescue team members
at each time step t is generated using the RPGMmodel
for outdoor users and using the random waypoint and
RPGM models for indoor users.

2) For each sub-region, kn, a simplified optimization prob-
lem of Equation (8a) is used, to find an efficient UAV
3D placement that minimizes the total transmit power
in providing wireless coverage for all rescue team
members within the sub-region.

3) The heuristic approach to solve the optimization prob-
lem of Equation (8a) is as follows: If the UAV
total transmit power is less than the threshold value,
the length of the sub-region, ln will be increased by
10 m. This process will be repeated. However, if the
UAV total transmit power is greater than the threshold
value, the length of the sub-region, ln is decreased
by 5 m. These processes will be repeated until the total
UAV transmit power is less than equal to the threshold
UAV transmit power, which is 1.0 watt in this system
model.

The optimization problem of Equation (7a) can also be
represented as follows:

minimize
xut ,yut ,zut : t∈T

Ptttotal (8a)

subject to Ptttotal ≤ PtUAVmax (8b)

(xmin, ymin, zmin) ≤ (xut , yut , zut ) (8c)

(xut , yut , zut ) ≤ (xmax , ymax , zmax) (8d)

where the minimum UAV transmit power over a duration
time, t to provide coverage for all rescue team members in
order to complete SAR operationwithin a sub-region, is given
as follow:

Ptttotal (min)(dB) = Ptrthtotal (dB)+ PL
t
total (9)

Ptrthtotal (dB) = N + γth (10)

where Ptrth_total is the minimum power received by all users.
N is the noise power and γ is the SNR threshold value.
Clearly, the optimization problem to find the optimal UAV
trajectory is NP-hard problem [24]. Therefore, heuristic
algorithm such as genetic algorithms (GA) [25], particle
swarm optimization (PSO) [26], and K-means with ternary
search [8], can be utilized to solve this optimization problem,
which are presented in the next section.

IV. UAV TRAJECTORY ALGORITHMS
In this section, we present two different approaches in solving
the problem of finding an efficient UAV trajectory in pro-
viding continuous wireless coverage for rescue team mem-
bers during SAR operation. More specifically, we utilize
an exhaustive search method using brute-force search space
algorithm, as well as, heuristic algorithms using PSO and GA
algorithms to solve the optimization problem formulated in
Section II. The pseudo code and the flowchart of the proposed
algorithms are also presented in this section.

A. OPTIMAL TRAJECTORY ALGORITHM
In this paper, the brute-force search space algorithm is used to
find the optimal UAV trajectory that minimizes UAV transmit
power. This algorithm scans all 3D points in the coverage
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space of UAV (inside each kn). The 3D space dimension is
(0, ytn , zkn_min) and (xmax ,ytn+1 ,zkn_max), where x and y is
the 2D dimension of the sub-region, and z is the UAV alti-
tude. Then, the algorithm finds the required transmit power
at each 3D point (location) in the space. Hence, the point
that results in the minimum required transmit power can be
determined, which can also be referred to as the optimal 3D
UAV placement. The resulting optimal 3D placement is then
compared to the efficient solution that is found using heuristic
algorithms, namely PSO and GA. The main drawback of the
brute-force search space algorithm is its computational com-
plexity ofO(n3).More specifically, this algorithm takesmuch
higher execution time than the proposed heuristic algorithms.
In this scenario, the whole 3D search space (x, y, z) is scanned
every time slot t for each sub-region to find the optimal UAV
trajectory. This takes a long time compared to the heuristic
algorithms. Algorithm 1 presents the brute-force search space
algorithm.

Algorithm 1 Brute-Force Search Space Algorithm
Optimal UAV Trajectory
1: Input:
(hmin, hmax): minimum and maximum UAV altitude.
(xmin, xmax), (ymin, ymax): minimum andmaximum 2D sub-
area dimensions.
2: Initialiaztion: total_pathloss=0;
3: For h= h_min : 1 : h_max
4: For x= x_min : 1 : x_max
4: For y= y_min : 1 : y_max
5: for All users (U):

Find the: total_pathloss;
See equations (3) and (5)

end
end
end

6: If (total_pathloss(x) ≤ total_pathloss(x+1))
then min_total_pathloss(x) = total_pathloss(x);

7: else min_total_pathloss(x) = total_pathloss(x + 1);
end

8: Repeat until finish all values of h, x and y; The optimal
3D placement of UAV (x, y, h) at Minimum pathloss =
min_total_pathloss(x).

B. EFFICIENT TRAJECTORY ALGORITHMS
In this contribution, PSO and GA are utilized to find the effi-
cient trajectory for an UAV that provides continuous wireless
coverage for the rescue teammembers during their movement
in the SAR operation.

1) PARTICLE SWARM OPTIMIZATION (PSO) ALGORITHM
In [26], the authors proposed PSO which is an optimization
technique based on the swarm intelligence paradigm, and
social behavior of animals such as schools of fish and flocks
of birds. PSO is a nature inspired evolutionary optimization

method used to solve computationally complex and hard
problems. In PSO, a swarm of n particles communicate using
search directions with other particles either directly or indi-
rectly over the search space to find a global best optimum.
During each iteration, all particles update their location and
velocity for better positions according to its experience and
its neighbours experience.

PSO is initialized with a group of random particles (solu-
tions) for all particles position and velocity. After that,
in every iteration the velocity and local best location for
each particle are updated according to Equations 11 and 12,
respectively. Moreover, the global best location is also
updated. Figure 5 presents the flowchart of PSO algorithm.

Vi(t + 1) = Vi(t)+ (c1 ∗ rand()) ∗ (PBestLocationi (t)− Pi(t))

+ (c2 ∗ rand()) ∗ (PGlobalBest (t)− Pi(t)), (11)

where Vi(t + 1) is the particle velocity at t + 1, whilst, c1,
and c2 are the acceleration coefficients for local and global
best respectively. The rand() function is a pseudo-random
number generator having ∈ [0,1], Pi(t) is the position of the
ith particle, PBestLocationi (t) is the best known position of the ith
particle at time t , and PGlobalBest (t) is the swarm best position
known.

The particle position is updated using the following
equation:

Pi(t + 1) = Pi(t)+ Vi(t + 1). (12)

In this work, the computational complexity refers to com-
putational steps in a single iteration of the PSO algorithm.
More specifically, each iteration consists of a fitness func-
tion evaluation of each particle of n population, as well as,
the velocity and position update, p. Hence, considering the
worst-case scenario, the computational complexity can be
denoted as O(np).

2) GENETIC ALGORITHM (GA) ALGORITHM
A GA is a search meta heuristic algorithm inspired from
Darwin’s natural evolution and natural selection theory. It can
be used to find an efficient solution for solving non-convex
optimization problems, which is also referred to as NP-hard
optimization problems [27], [28]. In this work, GA is applied
to find an efficient UAV trajectory that minimizes the UAV
transmit power. In this section, the phases of a GA invoked
to find an efficient solution for the optimization problem is
presented.

a: INITIAL POPULATION
To begin the GA process, a set of individuals which is called
initial population Npop is created. Each individual repre-
sents a legitimate solution to the given optimization problem.
An individual should be characterized by a set of parame-
ters such as a combination of numbers, alphabets or char-
acters known as chromosome (legitimate solution). In our
specific problem, each individual in the population is repre-
sented by the 3D UAV placement (xUAV , yUAV , zUAV ), as the
chromosome.

126382 VOLUME 7, 2019



A. H. Sawalmeh et al.: Wireless Coverage for Mobile Users in Dynamic Environments Using UAV

FIGURE 5. Flowchart for finding an efficient UAV 3D placement in each sub-region using PSO.

b: FITNESS FUNCTION
The fitness function is used to evaluate each individual in
the population. The GA fitness function repeatedly calculates
the fitness value associated with each individual. In each
iteration, a fitness score is set to each individual. Then, these
values are sorted based on their fitness scores. Fitness score
is then used in selection phase for reproduction of the next
generation. Individual with higher fitness score has higher
probability to be selected.

c: SELECTION
In this phase, a group of the fittest individuals is selected for
creating the next generation. These individuals are selected
based on their fitness score values, which are also referred

to as parents. These parents inherit their genes to the
offspring’s in the next generation. This selection strategy
is also referred to as tournament selection strategy. More
specifically, k-individuals are selected, then the tournament is
run to select the fitness individuals f , that have the best fitness
score among k-individuals. The top score individuals are then
selected to generate the next generation of k-individuals.

d: CROSSOVER
One of the basic operators in GA is crossover. In order to
create offspring, the genes of parents are exchanged among
themselves until the crossover point is reached. Then, the new
offspring form the next generation and are added to the
population.
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FIGURE 6. Flowchart for finding an efficient UAV 3D placement in each sub-region using GA.

e: MUTATION
Mutation phase occurs in each iteration to maintain the
diversity of the genetic population and prevent premature
convergence, such as trapped into local optimum solutions.
Mutation randomly changes the new offspring. In this work,
a bit flip mutation operator is used, where one or more
random bits (genes) are selected and flipped. Figure 6 shows
the flowchart of the GA algorithm.

Similar to the definition of computational complexity for
the PSO algorithm presented in Section IV-B.1, the computa-
tion complexity of the GA algorithm also refers to computa-
tional steps in a single iteration. More specifically, in the GA
algorithm the fitness function of each particle of n population
will be evaluated, then, the tournament selection to select m
individuals that have the best fitness score, to become parents
of the new generation of m individuals using the crossover
and mutation process. More specifically, in the tournament
selection, it takes O(log(m)) operations, after building the
initial tournament in O(m). Thus, considering the worst-case
scenario, the computational complexity of the GA algorithm
can be denoted as O(n.mlog(m)).

V. SIMULATION RESULTS AND DISCUSSIONS
A. SIMULATION RESULTS
We consider the deployment of a single UAV as an aerial
base station to provide continuous wireless coverage for a
rescue team to complete SAR operation within a subarea S,
as introduced in Section III, while considering continuous

wireless coverage for both mobile outdoor and indoor rescue
team members.

This section presents the simulation results of the proposed
PSO and GA algorithms to find an efficient UAV trajectory
that considers the rescue team members moving individually
and in a group, with the random waypoint and RPGMmobil-
ity models, respectively, as described in Section II-A. More
specifically, the proposed algorithms are invoked to find an
efficient UAV trajectory with the objective of minimizing its
required transmit power that satisfies the user’s minimum
data rate. The parameters used in the simulations are outlined
in Table 1.

The dimension of the subarea is 300 m × 2000 m, and
the overall time required to complete the SAR operation in
each subarea S is denoted as, T . Each subarea, S is divided
into n sub-regions, each sub-region has the dimensions of
300m× ln, where ln is the length of each sub-region ∈ S with
n denoting the index of each sub-region. The velocity of the
outdoor users movement is 0.41 m/s, and the time required
for the SAR operation to complete within each sub-region is
denoted as t , which is also referred to as time step inside each
sub-region.

Figure 7 illustrates a scenario of SAR operation within a
specific sub-region, k1 with a fixed UAV location. In this
scenario, we consider the rescue team moves from each sub-
subregion to another sub-subregion at velocity of 0.41 m/s,
as illustrated in Figure 7(a)-(d). In this case, a sub-region
is divided into several sub-subregions, as illustrated in
Figure 7(a)-(d). The required UAV transmit power to serve
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TABLE 1. SIMULATION AND SYSTEM PARAMETERS.

FIGURE 7. (a)-(d): Users movement and distribution inside sub-region k1 from t11
to t14

∈ t1UAV
. (e) Users

distribution inside sub-region k1 (Worst Case Scenario).

all mobile outdoor and indoor rescue team members to com-
plete SAR operation within each sub-subregion is less than
0.4 watt . However, Figure 7(e) illustrates the scenario where
all users are uniformly distributed within a sub-region, k1
and the total required UAV transmit power is 0.964 watt ,
which is less than themaximum requiredUAV transmit power
of 1 watt .

Figure 8 presents the scenario that is presented in
Section III, where we consider the rescue team members
are uniformly distributed around a reference point and the
rescue team moves from one sub-region to another, at each
time step, tn with n denoting the index of each sub-region.
More specifically, Figure 8(a) illustrates the SAR opera-
tion within sub-region k1, where the rescue team members
move from ytn = 0 m to ytn+1 = 210 m at velocity
of 0.41 m/s, hence, taking 8.54 min to complete the SAR
operation within the sub-region, k1. In this case, the res-
cue team members are distributed uniformly around a ref-
erence point of (150, 105), and the 3D UAV placement
found is (152.04, 119.87, 60.0) where the total required UAV
transmit power is 0.964 watt when it is determined using

PSO algorithm. However, when GA algorithm is used, the 3D
UAV placement found is (150.57, 119.58, 62.3) and the total
required UAV transmit power is 0.991 watt as presented
in Table 2.

Table 2 presents the efficient 3D UAV placement and the
corresponding minimum required UAV transmit power at
each time step tn using PSO and GA algorithms, as well
as, the optimal 3D UAV placement using brute-force search
space method. It can be seen that the optimal UAV altitude
that minimizes the UAV transmit power is the minimum
UAV altitude allowed, which is denoted as zmin. In this work,
the minimumUAV altitude is 60m for safety reasons in order
to avoid any collisions [29].

The optimal 3D UAV placement using brute-force search
algorithm are integers due to the increment of (x, y, z) val-
ues by 1 m at each iteration. This is because brute-force
search space method has high computational complexity,
as described in Section IV-A. Thus, in order to reduce the
running and computation time and algorithm computational
complexity, the values of (x, y, z) are chosen to be integers
within the allowed range of (x, y, z). On the other hand, if the
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FIGURE 8. Rescue team trajectory within a subarea S from t1 to t8 ∈ T .

TABLE 2. Simulation results for SAR operation within a subarea.

(x, y, z) values are incremented by 0.1 m at each iteration,
the execution time and algorithm computational complex-
ity is very high, specifically, it takes more than 3 hours to
return the results. Therefore, the optimal 3D UAV locations
in Table 2, are integers.

In this scenario, the execution time is used to represent
the algorithm computational complexity. It is found that the

optimal placement approach using brute-force search space
method took about 18.84 sec to find the optimal 3D UAV
placement with an increment of (x, y, z) values by 1 m at
each iteration with the value of zmin of 60. Whilst, the UAV
altitude found using the PSO andGA algorithm is in the range
of 60 m to 63 m. Whilst, the computation time to find the 3D
UAV placement took 0.31 s and 2.07 s only, when using the
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TABLE 3. Execution Time for UAV Trajectory Algorithms.

FIGURE 9. The convergence speeds of PSO and GA algorithms for different time steps of t1, t3, t6, and t9.

proposed heuristic approach namely PSO andGA algorithms,
respectively, as presented in Table 2.

More specifically, Table 3 presents the execution time
taken in finding the 3D UAV placement for sub-region k1
using PSO, GA and brute force search space algorithms.
It can be seen that the computational complexity for these
algorithms that was defined in Section IV are reflected by
the execution time taken by each algorithm in finding the 3D
UAV placement. It is also observed that the use of PSO and
GA algorithms to find the efficient UAV trajectory reduced
the execution time by a factor of' 1/60 and' 1/9 compared
to that when using the brute-force search space algorithm,
respectively. Whilst, the use of PSO algorithm to find the
efficient UAV trajectory reduced the execution time by a
factor of ' 1/7 compared to that when using the GA algo-
rithm. Moreover, the PSO and GA algorithms converge to
the efficient solution within a few iterations as can be seen in
Figure 9. Thus, the heuristic approach takes less computation
time compared to the optimal approach. The convergence
speeds of the PSO and GA algorithms for different time steps
are shown in Figure 9.

Whilst, Figure 10 shows the optimal UAV trajectory and
the efficient UAV trajectory in 2D during SAR mission from
t1 to t8 ∈ T using brute-force search space method, PSO and
GA algorithms.

FIGURE 10. Efficient UAV trajectory in 2D during SAR operation from
t1 to 9 ∈ T .

The performance of the dynamic UAV deployment sce-
nario is also compared with the case of the static UAV deploy-
ment scenario. In the case of the static UAV deployment
scenario, the movement of the rescue team members is not
considered. Hence, the rescue team members are considered

VOLUME 7, 2019 126387



A. H. Sawalmeh et al.: Wireless Coverage for Mobile Users in Dynamic Environments Using UAV

FIGURE 11. Static UAV deployment scenario (a) Users are uniformly distributed within subarea. (b) Convergence speed of PSO
and GA algorithms.

to be uniformly distributed inside the search subarea, S ,
instead of within each sub-region, kn as the scenario consid-
ered in the dynamic deployment. Figure 11(a) illustrates the
static UAV deployment scenario.

In the static UAV deployment case, the simulation results
show that the total UAV transmit power required to pro-
vide wireless coverage for all users to complete the SAR
operation is 20.814 watt with the 3D UAV placement is
[138.1893, 995.8992, 60] when using PSO algorithm.Whilst,
the required UAV transmit power is 20.9314 watt and the 3D
UAV placement is [136.8074 958.6295 61.23] when using
GA as shown in Figure 11(b).

More explicitly, in the case of static UAV deployment
required more than 20 watt of the total transmit power
compared with the dynamic UAV deployment that required
less than 10 watt of that to complete SAR operations
within subarea S. Thus, the deployment of mobile UAV
that can track the rescue team members movement during
the SAR operation requires less total transmit power by a
factor of about 1/2 compared to the static UAV deployment
scenario.

Moreover, in the case of dynamic UAV deployment sce-
nario, the required UAV transmit power converge to approx-
imately the same values at each time step as we can see
in Figure 9.

B. DISCUSSION
In this section, the main observations obtained from the sim-
ulation results presented in Section V-A are discussed.

It is observed that the proposed method as illustrated
in Figure 7 (e) requires less total transmit power in providing
wireless coverage for the rescue team to complete the SAR
operation within the sub-region, k1, compared to the method
illustrated in Figure 7(a)-(d). More specifically, in Figure 7(e)
the users are uniformly distributed around the RP and the
required transmit power to complete SAR operation within
the sub-region, k1 is 0.964 watt which is less than the thresh-
old value of 1.0watt .Whilst, in Figure 7(a)-(d) the sub-region
k1 is divided into several sub-subregions and the SAR team
moves from one sub-subregion to another sub-subregion.

The required transmit power required to complete SAR oper-
ation within sub-subregion illustrated in Figure 7(a)-(d) is
0.3307 watt , 0.2701 watt , 0.2717 watt and 0.3298 watt ,
respectively. However, the total required transmit power using
this dynamic UAV deployment strategy exceeds the threshold
value of 1.0 watt , in order to complete SAR operation within
sub-region, k1. Therefore, the dynamic deployment strategy
illustrated in Figure 7(e) is invoked in the SAR operation
within the subarea, S.
It is also observed that the proposed dynamic UAV deploy-

ment requires less total transmit power in providing wireless
coverage for the rescue team to complete the SAR operation
within subarea, S, compared to the static UAV deployment.
More specifically, as illustrated in Figure 11, the static UAV
deployment requires total transmit power of about 20 watt
in providing wireless coverage to the rescue team in order
to complete SAR operation within the subarea, S. Whilst,
the proposed dynamic UAV deployment requires the total
transmit power less than half of that, as illustrated in Figure 8
and Table 2.

The computation complexity of the proposed efficient
UAV trajectory algorithms are evaluated in terms of its exe-
cution time. It is observed that the UAV trajectory algorithm
invoking PSO and GA reduced the execution time by a factor
of' 1/60 and' 1/9 compared to that when using the brute-
force search space algorithm, respectively, as summarized in
Table 3. Whilst, the UAV trajectory algorithm invoking PSO
reduced the execution time by a factor of ' 1/7 compared to
that when using the GA algorithm.

VI. CONCLUSION
In this paper, an efficient UAV trajectory algorithm is pro-
posed for the dynamic deployment of a single UAV as
an aerial base station in providing wireless coverage for
mobile outdoor and indoor users. More specifically, the algo-
rithm is developed by considering the users’ movement in
a SAR operation. The outdoor rescue team members are
considered to move in a group with RPGM model. Whilst,
the indoor rescue teammembers are considered to move indi-
vidually and in a group, with random waypoint and RPGM
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models, respectively. The solution to the problem of finding
the efficient trajectory for the dynamic UAV deployment is
developed using two approaches, namely, heuristic and opti-
mal approaches. The employment of the heuristic approach,
namely PSO and GA algorithms, to find the efficient UAV
trajectory reduced the execution time by a factor of ' 1/60
and ' 1/9 compared to that when using the brute-force
search space algorithm, respectively. Whilst, the PSO algo-
rithm outperformed the GA algorithm in terms of execution
time reduction by a factor of ' 1/7. The performance of the
dynamic UAV deployment also outperformed the static UAV
deployment in terms of the required transmit power. More
specifically, the dynamic UAV deployment required less total
transmit power by a factor of about 1/2 compared to the static
UAV deployment.
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