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ABSTRACT This paper introduces a novel optimal schedule controller to manage renewable energy
resources (RESs) in virtual power plant (VPP) using binary particle swarm optimization (BPSO) algorithm.
It is crucial to minimize the costs giving priority for sustainable resources use instead of purchasing from the
national grid. The effectiveness of the proposed approach is examined by the IEEE 14 bus system containing
microgrids (MGs) integrated with RESs in the form of VPP. Real load demand recorded is used to model and
simulate the test case studies of the system for 24 h in Perlis, Malaysia. Moreover, weather data collected
from the Malaysian Meteorological Department such as wind, solar, fuel, and battery status data are used in
the BPSO to find the best ON and OFF schedules. The results found that the developed BPSO algorithm is
robust in reducing energy consumption and emissions of the VPP. This study contributes to the development
of an optimization algorithm for an optimal scheduling controller of MG integrated VPP in order to reduce
carbon emissions and manage sustainable energy. Finally, a comparative analysis of the optimal algorithms
over conventional justifies the use of RESs integration and validates the developed BPSO for sustainable
energy management and emissions reduction.

INDEX TERMS Virtual power plant, microgrid, energy management, carbon reduction, scheduling
controller, optimization.

I. INTRODUCTION
Empirical research on global warming and climate change
identifies the CO2 emission as the key factor for increasing
the atmospheric GHG emissions [1]. Climate change threat-
ens the quality of life and the habitability of planet earth
for many species, which significantly reduce the prospect
of ensuring energy, environmental sustainability, and eco-
nomic effectiveness (3E) of energy supply. Therefore, energy
efficiency and renewable sources have become the focus of
GHG emission reduction efforts to the researchers. Study
shows that, in Malaysia, 85% of total electricity is harvested
through fossil fuel. Therefore, CO2 will continue to increase
since the electricity demand is expected to increase by 4.2%
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per year till 2040. Thus, generating electricity from renew-
able sources increased remarkably from 2012 to 2017, and
expected to increase by 11% of the total generated power
in 2020 [6], [7]. Afterward, Long-range Energy Alternatives
Planning (LEAP) System was devised to monitor the CO2
emission for fossil fuel-based industrial sector [8]. Though-,
some achievements have been observed regarding the con-
trol of CO2 emissions, however, a huge gap still now exists
between the energy target and energy efficiency. Therefore,
workable effective mitigation policies need to be introduced
to reduce the CO2 emission and thus improve sustainable
economic development. Fig. 1 reflects the per capita CO2
emission starting from 2005 to present and is projected till the
year 2020 and Fig. 2 gives the change of fuel combustion in
the same period [9]. From the figures, it is clear that per capita
CO2 emission in Malaysia is expected to reach at 9.5 metric
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FIGURE 1. Per capita CO2 emission from 2005 to 2020 in Malaysia.

FIGURE 2. Fuel consumption starting from 2005 to 2020 in Malaysia.

tons in 2020 with the increased fuel combustions of about
225 million tons in the same year.

Microgrid (MG) is a small-scale power system consists
of the cluster of controllable thermal or electrical loads,
energy storage system (ESS) and distributed sources operat-
ing together with isolated or grid-connected mode [10], [11].
MG is the key aspect to increase the reliability, stability and
reduce the energy losses, reactive power support for voltage
profile improvement, GHG emission and consumption [12]
by controlling the volatility and intermittency of the power
sources. However, costs, protection, efficiency, and control
issues are still a great concern of MG technology. Against
this backdrop, virtual power plant (VPP) is a novel con-
cept mainly relay on information technologies (IT) develop
for sustainable energy utilization. VPP can be modeled to
operate for local distributed sources or can provide ancillary
services for centralized renewable plants. Therefore, the rela-
tionship between VPP and MG integrated with RES has been
focused on energy management system (EMS) to perform the
decision-making strategies considering the load forecasting
and monitoring of market demand analysis.

Previous research on EMS shows that MG based VPP
depends on the islanded or stand-alone and grid-connected
operation. In Island or stand-alone mode, a multiplatform
control device such as DSP is used in developing EMS con-
trollers for the standalone system consists of PV and diesel

integrated with ESS [13], [14]. However, in grid- connected
mode, MG operates as a current controller to inject power to
the national grid or store the surplus power to supply when-
ever it is required, depending on the available power, load
demand and unit price [15], [16]. In [18], suitable schedul-
ing considering the interactions between aggregators, market
operators, system operators, generators, and consumers has
been proposed to reduce the uncertainty associated with the
stakeholders. Uncertainty of wind turbines has been con-
sidered in day-ahead scheduling of the virtual power plant
to manage the energy and reserve electricity market [19].
However, a simple demand-side model is presented in this
paper. Other researches on EMS focuses on the fuzzy logic
controller technique; however, these techniques need huge
optimization data and trial-and-error procedures for setting
the control parameters [20]. Therefore, researchers still now
focus on developing the improvedVPP towards energy saving
and emission reduction for future MG implementation.

Recently, optimization techniques have been widely used
to improve and optimize the performance by minimizing the
overall costs and saves the energy, considering the factors
associated with the system. Artificial intelligence controller
and genetic algorithm are analyzed to ensure the system
stability and smooth transition of MG considering the peak
load shaving in grid-connected and standalone mode [21].
A multi-agent decentralized EMS based distributed intel-
ligence is designed for optimal carbon-energy combined-
flow (OCECF) of a combined large-scale power system [22].
However, the notable drawbacks of the artificial intelligent
technique are the high investment and replacement costs and
requirement of the enormous amount of data for setting the
control parameters. Therefore, researches do not rely on this
controller to predict the operation of each source to ensure
accuracy, reliability and to minimize the cost. Significant
aspects of MG connected VPP are pointed as increased net-
work efficiency and security, reduction of cost and emission,
supply the required amount of energy and controlling the peak
shaving [23].

Optimization techniques such as PSO [24], genetic algo-
rithm (GA) [21], gravitational search algorithm (GSA) [25],
lightning search algorithm (LSA) [26], Quantum-behaved
lightning search algorithm (QLSA) [27] are used as the
improved technique to solve the traditional issues of the
existing technology. However, these algorithms have the lim-
itation of complex parameter calculation and formulation,
coding difficulties and longer computational time in find-
ing the best fitness value. In some applications, it has been
observed that-battery integration is discouraged and intermit-
tency of distributed sources are not considered [28]. Study
shows that binary optimization is very helpful in searching
optimal dispatch, unit commitment problems and dynamic
multi-objective functions in MG operation under uncertainty
conditions [29].

Scheduling is a set the data in the form of ON and OFF of
the MG sources based on demand and sustainable power uti-
lization [30]. However, ON and OFF of MG sources need to
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be optimized in order to minimize power consumption [31].
Previously, symbiotic organisms search algorithm and dol-
phin echolocation optimization have been used in MG oper-
ation to find an optimal schedule of ON and OFF of MG
sources [32]. However, the objection function in minimizing
the cost of theMG sources and reducing the emissions are not
priorities in the above optimization. In this paper, binary PSO
algorithm has been used to search for the optimal schedule for
EMS dealing VPP integrating RES sources for 24 hours using
IEEE 144 bus test system. Binary PSO (BPSO) is advan-
tageous for simple calculation, easy handling, high conver-
gence rate and minimum storage requirement. 100 iterations
are performed to find the best schedule to reach the target
objective of minimizing the power and reduce CO2 from the
main grid.

II. OVERVIEW OF VPP AND MG RELATIONS
AVPP is amulti-technology unit, which contains both renew-
able and non-renewable sources integrated with energy stor-
age systems connected with smart devices and information
communication systems [33], [34]. VPP is a cloud-based
distributed power plant that coordinates the heterogeneous
distributed energy resources (DERs) to increase the power
generation, as well as trading or selling power on the open
market [35]. The motivation behind creating VPP technology
is to coordinate the various types of energy resources to min-
imize the cost of power generation and maximize the profits
received from the sale of that power. A MG refers to a small-
scale power system with a cluster of loads and distributed
generators operating together through energy management
systems. However, MG is a cluster of local DERs and loads
which operates within the grid either in grid-conned or stand-
alone mode at a low or medium voltage level.

The concept of VPP integrated with MG’s RES merging
is a holistic manner to combine their strengths for improv-
ing efficient energy utilization [36]–[38]. However, their
strength and weakness have not been thoroughly investigated
in different applications. For example, a single MG is too
small to participate in electricity markets. However, a VPP
model consists of multiple MG could significantly improve
the profitability in electricity trade-off [39]. Therefore, this
paper emphasis on overcoming the aforementioned short-
comings in the existing VPP model. Thus, the significant
outcome from this study assists the utilities enormously in
scaling up the implementation and interconnection of DG
into existing networks. The notable contribution of this study
is the development of optimization algorithm in controlling
the power exchange among the interconnected system in
order to:
• Reduce the expense of generating electricity, purchase
energy from the grid and energy storage cost.

• Develop sustainable energy management system
between VPP and MG integrated with RESs.

• Obtain minimum operational cost with the best VPP
scheduling to maintain stable and quality power supply
to the loads.

• Increase the reliability in the system to gain customer
satisfaction.

• Reducing the power losses caused by constraints into
DGs, loads, the power-flow, and system operation.

• Achieve the objective of reducing CO2 emission.

III. VPP AND MG SYSTEM MODELLING
The main system is a standard IEEE Fourteen Bus System
representing distribution structures in which the loads in each
bus and the distribution impedance are real and actual data.
In this study, five MG is included to share the feed loads
in each specific bus. The individual MG is modeled with
five sources. Detail analysis of the IEEE 14 bus system, load
distribution and MG development along with the EMS are
illustrated as follows;

A. IEEE 14 BUS STANDARD SYSTEM
A modified IEEE 14 bus system consists of five MG sources
and loads has been depicted in Fig. 3, which considered the
only one generator at bus 1 to control the grid, while original
system contains two generators. Each of the fiveMG consists
of diesel generator, photovoltaic, wind turbine, fuel cell and
battery. Although in the standard bus networking system, per
unit value is widely used, throughout this study, actual values
are considered to find the actual power values for controlling
purposes. The main grid is connected to bus1 and supply
200MW of power to the whole system in which the main sub-
station transformer converts voltage from 33kV to 11kV at
50Hz of frequency. Five MGs have been installed in the sys-
tem in different bus bars to enhance system reliability, power
quality and to reduce the transmission line losses. Study on
the IEEE standard system 1547 reveals that, multiple MG
system has the improved operational characteristics to make
the system stable and reliable compared to the single MG
system [40]–[42].

Each MG supplies 10 MW to the chosen bus bar and the
capacity of the bus can cover the supplies in order to avoid
tripping during the stand-alone mode of operation. MGs have
been installed in bus 5, bus 6, bus 10, bus 11 and bus 13 as
in Fig. 3. All the MGs are of the same size with an equal
number of sources and each bus of this system is connected
to one or multiple buses to develop the entire architecture.

Table 1 shows the impedance of R, XL , XC for IEEE
fourteen bus test system.

The system contains nine loads located at bus 2, bus 3,
bus 4, bus 5, bus 6 and following the bus 9 to bus 14,
respectively. Every bus represents a feeder to a specific load-
ing area demand. A real-time load demand curve of Perlis,
Malaysia, has been represented in Appendix, which was
recorded on February 2016. Maximum peak of each load is
shown in Table 2.

B. DEVELOPMENT OF MG SYSTEM
Single line diagram of the interconnected sources has been
shown in Fig. 4. The total capacity of each MG is 10MW
operated with 415V at 50 Hz. The MG is linked to the
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FIGURE 3. Modified IEEE 14 bus system.

TABLE 1. Bus to bus impedance for IEEE 14 bus system.

distribution bus through a star connected three winding trans-
former. Each source is connected to AC bus through either
DC to AC or AC to AC converters. Table 3 shows the type of
distributed generator, its capacity and fuel used. Each source

TABLE 2. Maximum active and reactive power in each bus load in IEEE
fourteen bus system.

FIGURE 4. Single line diagram of proposed interconnected MG system.

TABLE 3. Microgrid sources characteristics.

participates in the VPP based on the controller decision.
The scheduling controller decision is generated using PSO
optimization algorithm. Parameters of the optimization are
weather, loading capacity, battery status, fuel and per unit
price.
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From the table, solar irradiance and wind speed have been
considered for the photovoltaic and wind power respectively.
This research has been conductedwith the real hourly average
weather data, provided by Tenaga Nasional Berhad Research
(TNBR), Malaysia. The data tracker records the data of solar
irradiance and wind speed in a year and then averaged into
an accurate daily reading as depicted in Fig. 5. Another RES,
solid oxide fuel cell (SOFC) is used oxide electrolyte to
conduct negative oxygen ions from the cathode to the anode
to generate electricity and hot water.

FIGURE 5. a) Real wind speed reading b) Real solar irradiance reading.

IV. OPTIMIZED SCHEDULING CONTROLLER
FOR ENERGY MANAGEMENT
Scheduling controller is used to regulating each source in the
VPP system for the optimal EMS. In this section, details of
BPSO are described to perform the optimal EMS.

A. ENERGY MANAGEMENT SYSTEM
AnEMS is a set of transmitters, sensors, data acquisition, data
control and data processing systems at distributed generator
location. The EMS has a supervisory controller to tasks the
scheduling ON and OFF, and resetting temperature set points
based on conditions [43]. The main tasks for EMS are to
generate suitable set points in smart power sharing among

the sources to economically optimized power dispatch and
fulfill specific load demand. Since the irradiance and wind
speed are intermittent in nature, therefore, forecasting and
fast online algorithms are very important for EMS to define
energy availability and the optimized power dispatch signals
to the loads. In this research, a novel online BPSO algorithm
has been proposed to obtain the minimum operational cost
with the best VPP scheduling, maintaining the stable and
quality power supply to the loads. Fig. 6 shows EMS of the
VPP integrated MG using the BPSO algorithm to the control
power flow of the aggregating system.

B. BINARY PARTICLE SWARM
OPTIMIZATION ALGORITHM
PSO is a simple concept and computational algorithm which
is effectively applied to optimize various continuous non-
linear functions [44]. In PSO algorithm, the population is
initiated randomly with particles and evaluated to compute
fitness function together with finding the particle best (best
value of each individual) and global best (best particle in the
whole swarm). Initially, with the fixed dimensions and fitness
value, each individual determines its particle best. The best
individual among the particle best population, on the other
hand, the global best is determined and the loop starts to
converge to an optimum solution. In the loop, particle and
global bests are determined to update the velocity and the cur-
rent position of each particle. Evaluation is again performed
to compute the fitness of the particles in the swarm. This
loop is terminated with a stopping criterion predetermined in
advance.

The PSO algorithm is simulated with some modifications
to generate binary code known as BPSO to control the multi-
sources in each MG of the system. However, in the con-
ventional trial and error process, it is impossible to obtain
the best schedule for the system. Thus, proposed BPSO is
used to control the efficient power supply from the main
grid and price using the sustainable resources to save the
fuel and the cost. Stepwise BPSO algorithm development
has been explained below. To develop this algorithm, twenty
swarm has been selected and each swarm representing a cell
(Schedule). Thus, the schedule concurrently forms 24 rows×
25 columns matrix considering the initial condition to make
the random cell and a binary cell.

1) INITIALIZATION
PSO algorithm randomly initiates the particles at the begin-
ning to calculate the fitness to get the best value of each
individual schedule in the whole swarm. Table 4 shows the
pseudo code for the initialization step. BPSO parameters are
chosen as the 33kV grid, solar irradiance and wind speed as
shown in Fig. 5, and average energy pricing of 43.7 cent/kWh.
Firstly, each individual cell with its dimensions and fitness
value is assigned to the particle best; however, the best pop-
ulation cell with its dimension and fitness value is, on the
other hand, assigned to the global best. Then a loop starts to
converge to an optimum schedule by determining the particle
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FIGURE 6. Block diagram represents BPSO schedule controller operation.

TABLE 4. Pseudo Code For BPSO initialization.

and global bests to update the velocity. Then the current
position of each particle is updated with the current velocity.
Evaluation is again performed to compute the fitness of the
particles in the swarm under weather conditions and battery
status. Creating a random schedule in decimal and converted
to binary to be the first test schedule as in Eq. 1 and Eq. 2.

swarm(h,s)=rand .

swarm(1,1) · · · swarm(1,s)
...

. . .
...

swarm(h,1) · · · swarm(h,s)

 (1)

swarmB(h,s)=rand .


swarmB(1,1) · · · swarmB(1,s)

...
. . .

...

swarmB(h,1) · · · swarmB(h,s)

 (2)

where, swarm and swarmB denote the random decimal pop-
ulation matrix and random population binary matrix respec-
tively; h = 1, 2, 3 . . . . . . , 24 depicts the total number of hour
and s = 1, 2, 3 . . . . . . , 25 reveals the status of the switch of
distributed sources.

2) CREATING INITIALIZATION CELL
After initialization of the random decimal and binary
matrix, a cell is needed to form following the Eq. 3 and
Eq. 4. After creating the cell, the best cell will be stored
in Pbest_TD and Pbest_TB for the decimal and binary,
respectively.

swarmT (1,k)

=


 swarm(1,1) · · · swarm(1,s)

...
. . .

...

swarm(h,1) · · · swarm(h,s)


(1,1)

. . . . . .

 swarm(1,1) · · · swarm(1,s)
...

. . .
...

swarm(h,1) · · · swarm(h,s)


(1,k)

 (3)
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TABLE 5. Pseudo code for internal loop with binary conversion.

swarmTB(1,k)

=


 swarmB(1,1) · · · swarmB(1,s)

...
. . .

...

swarmB(h,1) · · · swarmB(h,s)


(1,1)

. . . . . .

 swarmB(1,1) · · · swarmB(1,s)
...

. . .
...

swarmB(h,1) · · · swarmB(h,s)


(1,k)

 (4)

where, swarmT is the total of all swarm cells; swarmTB is the
total of all swarmB cells; k is population size.

3) CONVERSION OF DECIMAL TO BINARY
The decimal cells are converted into binary cells following
the sigmoid function shown in Eq. 5 and the conversion
of 0 or 1 value is shown in Eq. 6.

sigmoid
(
T{i}

)
=

1

1+ e−T{i}
(5)

If sigmoid > rand then TB{i} = 1

elseTB{i} = 0 (6)

4) INTERNAL LOOP
The iteration loop runs for 100 times with 20 particles
swarm and each swarm carrying a schedule of 600 values.
Table 5 reflects the pseudo code for internal loop with
binary conversion using sigmoid function. The minimum
evaluation will be stored at fbest and it location best . Also
swarm_TDbest will be saved to gbest as in Eq. 7 and Eq. 8.

[fbest, best] = min(Evaluation) (7)

gbest = swarm_TDbest (8)

Throughout the search process, the velocity and position of
each swarm can be updated according to Eq. 9 and Eq. 10.

v{k} =w∗v{k}+c1∗rand∗(Pbest_TD{k}

− swarm_TD{k})+ c2 ∗ rand

∗(gbest − swarmTD{{k}} (9)

TABLE 6. Pseudo code for evaluating the fitness function.

newpos = swarmTDk + v{k}

swarm_TDk = new_pos (10)

Afterward, the simulation runs with the current cell to
provide the system with binary matrix. Therefore, condition
zero and one reflect the specific DG will be Off ON, respec-
tively. Table 6 depicts the pseudo code for finding the fitness
function. The target of this research is to minimize the car-
bon emission and energy consumption of the existing power
network by replacing the power coming from national grid
with small-distributed generations. In this research, BPSO is
designed to be a global minimizer and selecting minimum
fitness with global minimum for finding the best cell by cal-
culating objective function in equation (11) and compare to
previous best Cell at every iteration. Thus, the fitness function
in this process is the mean cost to obtain the minimum desired
outcome as in Eq. 11.

MC = (
3
2
IV ∗ p.f . ∗ RM/KWh) (11)

where, I and V denote the total current and voltage;
p.f . reflects the power factor; RM/KWh reveals the energy
pricing per hour. Here, in the grid, the power factor is chosen
0.85. As the DGs inject the real power only at unity power
factor, the overall power factor should reduce from 0.85.
To control this poor power factor, inverter with reactive power
control is used which can convert the dc power to ac, and at
the same time can reduce the both active and reactive power
from the grid to make the power factor stable. Thus, to obtain
the desired objective function, the following constraints have
been followed,

Vw,cut−in = 0.5ms−1

Irradiancesolar ≥ 50watt/m2

Pnetg (grid)+ Pnetg (DGs) ≥ Pnetload (12)

5) BEST CELL
The objective is to minimize the MC to minimum at the end
of the optimization and the minimum evaluation will have
a location in the memory following Table 7. Thus the best
schedule is obtained according to Eq.13 and Eq. 14.

[x, y] = min (Evaluation) (13)

Bestsch = PbestTB{y} (14)

The BPSO operational algorithm is shown in Fig. 7.
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TABLE 7. Pseudo code for the best schedule.

FIGURE 7. BPSO optimization algorithms operational flow.

V. RESULTS AND DISCUSSION
The obtained results of the proposed BPSO optimization
algorithm are validated in terms of objective function,
scheduling controller and optimal energy generation under
different conditions. The result shows how the optimized
algorithm in the VPP and MG can reduce the power in order
to reduce the consumption and increase the profit. Energy
consumption, and the electricity cost are calculated following
the equations below:

EkWh/day = P (kW )× th/day (15)

CostRM/day =
Ekwh/day × Costcent/kWh

100cent/RM
(16)

FIGURE 8. Optimization objective for BPSO.

To obtain the results, IEEE 14 bus system including the
real data in the VPP runs hundred times for several days to
achieve the best objective function in order to develop the best
scheduling controller to reduce the power consumption and
carbon emission, respectively. Fig. 8 shows the optimization
of the objection function of 100 iterations using BPSO. It is
also seen that the function is converge shortly and reduced
the huge amount of power consumption, which is almost
impossible in trial and error methods.

FIGURE 9. Spy figure for the best schedule for BPSO.

BPSO optimization algorithm generates binary decision
of 0 and 1 for the scheduling controller; where 0 represents
OFF state and 1 represent ON state for the individual DG at
any specific hour in the EMS schedule. This operation took
4000 tries for initializations and iterations of the controller
to obtain the best schedule for the operation. Fig. 9 shows
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FIGURE 10. RESs and MG power for MG1 at bus 5 using BPSO.

FIGURE 11. RESs and MG power for MG2 at bus 6 using BPSO.

the ON and OFF states for 24 hours of operation for the
best schedule using BPSO. This ON and OFF schedule of
the DGs are based on the conditions of weather data, battery
charge/discharges and fuel states, respectively.

A. EXPERIMENTAL SETUP
Testing of this system is based on the experimental setup
to show the participation of the MG and its sources in
case of BPSO algorithm. The system includes five MGs
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FIGURE 12. RESs and MG power for MG3 at bus10 using BPSO.

FIGURE 13. RESs and MG power for MG4 at bus11 using BPSO.

each MG includes five DGs, so the numbering of the DG
starts with DG1 end to DG25 as a results DG1 to DG5 at
MG1, DG6 to DG10 at MG2, DG11 to DG15 at MG3,

DG16 to DG20 at MG4, and DG21 to DG25 at MG5,
respectively. Table 8 represents each DG numbers, types and
capacity.
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FIGURE 14. RESs and MG power for MG5 at bus13 using BPSO.

TABLE 8. Distributed generation types and capacities.

This system runs for one day with hourly real time vari-
able data, so that the algorithm in each change enables the
renewable sources to supply the power to the load depending
on the availability of distribution generations throughout the
operation.

B. BPSO ALGORITHM TEST
The best schedule is obtained by applying BPSO on the IEEE
14 bus system with MGs and their RESs. This test shows the
characteristics of each source in everyMG in terms of ON and
OFF using BPSO algorithm as shown in Fig. 10 to Fig. 14,
following from MG1 to MG5 at bus 5, bus 6, bus 10, bus 11
and bus 13, respectively. From the analysis, it is seen that,
each source of every MG gives separate power at different
times of the day; therefore the total power also varies at
different buses throughout the day which has been shown
at the last signal in each figure. It is also seen that BPSO

optimization algorithm find the best schedule to connect
the RESs and MGs in the VPP and the grid based on the
constraint of the objective function.

In Fig.15, a comparative study has been conducted to
show the effectiveness of the developed BPSO algorithm
in which the main grid power at bus 1 is compared with
no grid connection, randon schedule and BPSO optimized
schedule, respectively. The power drawing from the main
grid is extremely reduces when BPSO optimized MGs are
installed which is approximately 47% power saving for the
national grid compared to with MGs. Accordingly, it will be
easy to generate reduced power to fulfill the demand and keep
the generation margin between generation and consump-
tion. Fig. 16 shows the power saved using BPSO algorithm.
Following the eq. 16, the total cost saved with BPSO is
RM 232124.5674.

C. CO2 EMISSION REDUCTION
In general, CO2 emissions are estimated using the infor-
mation on fuel consumption in units and heat content of
fuel in MMBtu multiplied by specific emission factor [32].
However, an emission per kWh is used with power quality
data relating to electricity efficiencies [45].

According to the Intergovernmental Panel on Climate
Change (IPCC), theworld emits approximately 27 gigatonnes
of CO2 e frommultiple sources andwith electrical production
emitting 10 gigatonnes which approximately 37% of global
emissions [46]. Electricity consumption is one of the largest
sources of carbon emissions. Thus, it is essential to measure
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FIGURE 15. Main gird power at Bus1 supply to the IEEE 14 bus system
with and without MGs connected.

FIGURE 16. Power saved when applying BPSO schedule controller.

carbon emissions perfectly. The carbon emission calculation
depends on some factors such as electricity consumption,
composite electricity or heat emission factors, respectively.
These factors are varying from country to country. Based
on International Energy Agency (IEA), composite electricity/
heat factors in Malaysia is 0.6559169 kgCO2/kWh. To be
more specific, the electricity specific factors in Malaysia is
0.74884244 kgCO2/kWh [47]. In this study, CO2 emissions
of power consumption are calculated by applying an emission
factor (EF) to the amount of kilowatt hours (kWh) consumed
by VPP as in Eq. 17.

kWhxEF = GHG (kgCO2) (17)

where, GHG is greenhouse gases, EF is the emission fac-
tor, and KWh is the amount of power consumed by VPP.
Fig. 17 shows that amount of CO2 emission reduction is

FIGURE 17. Comparison of GHG emission reduction using 1) BPSO
scheduling controller 2) random scheduling controller.

higher using BPSO algorithm based schedule controller com-
pare to random schedule controller.

The proposed model has been compared with other
proposed algorithm by different researchers for testing the
performance in saving the energy and costs. Comparative
analysis among the researches is shown below:

TABLE 9. Comparative analysis of proposed model with other models.

From the analysis, it is seen that, BPSO performs sat-
isfactorily in saving power, costs and emission reduction.
Moreover, it requires less computational time as it has less
parameters as constraints.

VI. CONCLUSION
MGs in a real system could surely reduce the energy
consumptions; however, RESs in the MGs need a robust
controller to organize their work efficiently. Accordingly,
the objective of this study is achieved in developing a novel
BPSO algorithm based scheduling controller for the energy
management system of an IEEE14 bus systemwhich includes
multi MGs integrated with RESs to form virtual power plant.
The VPP system is modeled and simulated with real data
of load recorded in February 2016 at Perlis, Malaysia. The
developed BPSO algorithm resulted in an optimal scheduling
control for the sustainable energy utilization of the VPP with
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FIGURE 18. Load curve in MW for each load in IEEE 14 bus test system.

RESs integrated MGs. Obtained results show the significant
contribution to reduce 47% grid energy consumption and
reduce the CO2 emission by 8.46% compare with random

scheduling controller. Compare with other algorithm and
controller also, BPSO shows better performance in power
saving, cost saving and emission reduction. Moreover, BPSO
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requires less computational time. Overall, the optimal BPSO
algorithms give priority in selection ON and OFF of the
RES schedule depend on the RES importance, per unit cost
and availability to cover the demand. Compassion among
the algorithms shows that the BPSO algorithm outperforms
other non-optimized or optimized controllers in terms of
consumption reduction, energy and cost saving and carbon
reduction which in turns validate the development.

APPENDIX
See Fig. 18.
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