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Summary

The main goal behind the combined economic emission dispatch (CEED) is to

reduce the costs incurred upon fuel and emission for the generating units avail-

able without any intention to violate the generator and security constraints.

Hence, the CEED must be handled after considering two challenging goals such

as the costs involved with emission and fuel. In this paper, chaotic self‐adaptive

interior search algorithm (CSAISA) was proposed to solve the CEED problems,

considering the nonlinear behavior of generators in terms of valve point effects,

prohibited operating zones, and security constraints. The proposed algorithm was

tested for its effectiveness using 11‐generating units (without security), IEEE‐30

bus system, and IEEE‐118 bus system with security constraints. The results of

the proposed CSAISA were compared with interior search algorithm (ISA), har-

mony search algorithm (HSA), differential evolution (DE), particle swarm optimi-

zation (PSO), and genetic algorithm (GA). To conclude, the proposed CSAISA

outperformed all other algorithms in terms of convergence speed, implementation

time, and solution quality, which was tested using performance metrics.

KEYWORDS
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1 | INTRODUCTION

The sole aim of the combined economic emission dispatch (CEED) is to guarantee both less fuel cost and reduced emission
in the available generating units simultaneously. In general, the fossil fuel–based electricity generationmethods discharge
a lot of pollutants into the atmosphere such as nitrogen oxides, sulfur dioxides, and carbon dioxide. Because of various
measures taken after the implementation of “American Clear Air Act” amendments in the year 1990 and other such acts
in different countries, the power generation utilities started focusing on environmental protection, whereby its operational
procedures were changed to generate maximum electricity at low cost and low pollution level. A number of methods were
proposed in the literature1,2 to minimize the atmospheric emissions. These studies proposed a simple and easy to imple-
ment emission dispatch (ED) method that reduces the fuel costs and emission rate simultaneously without any violations
in terms of equality and inequality constraints. Numerous conventional optimization techniques have been used to miti-
gate problems in CEED such as Newton‐Raphson, quadratic programming, and continuation and linear programming
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(LP) methods.3 These mathematical methods usually suffer from convergence problem and might operate with the avail-
able local best solution. Further, it is also forced to tolerate the dimensionality problem especially in case of large‐scale
power systems. Recent advances in evolutionary computing techniques have proved that they possess powerful searching
capacity to achieve global optimal solutions in complex and multimodel optimization problems. Evolutionary algorithms
such as genetic algorithm (GA),4 evolutionary programming (EP),5 hybrid EP, LP,6 and improved particle swarm optimi-
zation (IPSO)7 have been used to solve economic load dispatch (ELD) problems with security constraints as alternative
techniques to achieve the best solution when compared with conventional techniques. Evolutionary algorithms seem
to exhibit great efficiency in finding solution to nonlinear ELD problems in addition to providing a speedy reliable solu-
tion that is suboptimal or nearly the global optimal.8 In recent studies, a lot of new algorithms were proposed to solve ELD
problems, one of which is backtracking search optimization (BSA)9 method in which two new crossover and mutation
operators were introduced to find a global solution. In the literature, Jianzhong et al,10 the researchers proposed a
multiobjective multipopulation–based ant colony optimization to solve continuous domain problems (MMACO_R). This
method had Gaussian function–based niche search method in order to improve the Pareto‐optimal front solutions' distri-
bution and accuracy. Multiobjective Ɛ‐constrained method (ƐBiODE) was proposed earlier,11 in which multiobjective
optimization techniques were hybridized with Ɛ‐constrained method so as to arrive at the optimal solution. Real‐coded
chemical reaction (RCCRO) algorithm was proposed in the study12 in which the algorithm mimics the molecular inter-
action as in the chemical reaction so as to achieve the low energy (global) state. Modulated particle swarm optimization
(MPSO)13 was proposed by researchers in which a special truncated sinusoidal constriction function was introduced to
control the velocity of particles. Comprehensive learning strategy was introduced to enhance the learning ability of pop-
ulation in hybrid bat algorithm (RCBA).14 Flower pollination algorithm (FPA) as suggested in the literature15 has only
one key parameter for tuning the algorithm. “Modified artificial bee colony based on chaos” (CIABC) has been introduced
in the literature16 to solve multiobjective optimization problems (MoPs). Symbiotic organisms search (SOS)17 algorithm
has been developed with a new procedure in updating the solutions during iterative process and the elimination of par-
asitism phase. Chaotic self‐adaptive differential harmony search (CSADHS) algorithm was developed in the earlier
study18 to solve MoPs. A modified harmony search method (MHSA)19 was proposed with a new improved method using
wavelet mutation and new memory consideration scheme based on roulette wheel mechanism in order to increase the
search capability. Mine blast algorithm (MBA) was discussed in Ali and Elazim20 to solve MoPs, and other recent search
techniques that were proposed to solve ELD, ED, andMoPs are floating search space,21 enhancedmoth‐flame optimizer,22

immune algorithm,23 multiobjective biogeography–based optimization,24 artificial bee colony algorithm,25 ant colony
optimization,26 Franklin and Coulomb law–based algorithm,27 population variant differential evolution,28 stochastic frac-
tal search algorithm,29 quantum‐inspired particle swarm optimization (QPSO),30 quadratic approximation–based hybrid
artificial cooperative search algorithm,31 opposition‐based harmony search algorithm (OHS),32 spiral optimization algo-
rithm,33 chaotic firefly algorithm,34 mixed integer optimization problem,35 stochastic weight trade‐off chaotic Non‐dom-
inated Sorting Particle Swarm Optimization (NSPSO),36 and interior search algorithm (ISA).37 Generally, there is no
satisfactory performance registered from meta‐heuristic algorithm in the multimodel fitness landscapes. This might be
due to the reason that it gets confined to the local optima. So a number of investigations are being conducted to enhance
the performance of this meta‐heuristic algorithm through novel strategical implementation. Apart from this, security con-
straints have not been taken into account in many the research works. So, in the current research work, the researchers
proposed a new chaotic self‐adaptive interior search algorithm (CSAISA) method after considering the security con-
straints to explore the proposed algorithm's performance on 11‐generating units (without security) and IEEE‐30 bus
and IEEE‐118 bus systems. The performance of the proposed algorithm was compared with ISA, HSA, differential evolu-
tion (DE), PSO, and GA. The compromised solutions were generated using weighted sum method, and the best compro-
mised solution (BCS) was chosen using fuzzy logic. The proposed CSAISA produced better quality solutions, which was
inferred by conducting performance metric analysis for ELD, ED, and CEED problems considered in the study and the
exhibited speedy convergence characteristics that took lesser computational time.

2 | FORMULATION OF CEED PROBLEM (FORMULAE)

2.1 | Minimization of fuel cost

Minimize

Ft;cost ¼ Fi Pið Þ ¼ ∑N
i¼1 ¼ Fi Pið Þ ¼ ai þ biPi þ ciP2i þ ei sin fi* Pi; min − Pið Þð jj (1)
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where the fuel cost of the ith generation is denoted by F i(Pi) and the total fuel cost is expressed through F t,cost. The fuel
cost coefficients of the ith unit are ai, bi, ci, ei, and f i with valve point effects. In the formula above, Pi denotes the power
output of the ith generator whereas the total number of generating units is expressed through N.
2.2 | Minimization of emission

The total emission F 2 can be expressed as follows:

F2 ¼ Ei Pið Þ ¼ ∑N
i¼110

−2 αi þ βiPi þ γiP
2
i

� �þ δi exp λiPið Þ (2)

where the ith generator's emission curve coefficients are denoted as αi, βi, γi, δi, and λi.
2.3 | Real power balance constraint

The power balance equation of the system is as follows:

∑N
i¼1Pi ¼ PD þ PL (3)

where PL denotes the total loss and PD denotes the total demand. Using Equations 4 and 5, the power loss can be
calculated as follows:

Pi–Pdi ¼ ∑Nb
j¼1❘V i❘❘V j❘Y ij❘Cos θij–δi þ δj

� �
; i ¼ 1; …; Nb (4)

Qgi–Qdi ¼ ∑Nb
j¼1❘V i❘❘V j❘Y ij❘Sin θij–δi þ δj

� �
; i ¼ 1; …; Nb (5)

where Pi denotes the real power production at bus i, Pdi denotes the real power requirement at bus i whereas the reac-
tive power production at bus i is denoted through Qgi, Qdi denotes the reactive power requirement at bus i, |Vj| denotes
the voltage level at bus j, |Vi| denotes the voltage level at bus i, |Yi j| is the magnitude of the ijth element of Ybus, θi j is
the angle of the ijth element of Ybus, the total number of buses is denoted by Nb, δi is the voltage angle at bus i, and δj is
the voltage angle at bus j. The system inequality limitations h (x, u) are as follows:
2.4 | Generation limit constraint

Every unit's electrical power output must fall between the minimum and maximum values, which are defined and given
below.

Pi;min ≤ Pi ≤ Pi;max for i ¼ 1; 2; 3; …; N (6)

where Pi,min and Pi,max are the minimum and maximum power limits of ith generator.
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2.5 | Prohibited operating zones

Pi ¼
Pi;min ≤ Pi ≤ PL

i;1 or

PU
i;k−1 ≤ Pi ≤ PL

i;k or

PU
i;ni

≤ Pi ≤ Pi;max; k ¼ 2; 3; …; ni

2
664

3
775 (7)

2.6 | Security constraints

Security constraints considered are load bus voltages, transmission line flow, and their bounds, which are given here-
with:

V i;min ≤ V i ≤ Vi;max for i ¼ 1; 2; 3; …; NB (8)

LFi; j ≤ LFmax
i; j ; i ¼ 1; …; NL and j ¼ 1; …; NL (9)

where Vi,minand Vi,max denote the minimum and maximum voltage limits of ith PQ bus. NB is the total number of PQ
busses. LFi,j is apparent power flow from ith bus to jth bus. LFmax

i; j denotes the highest rating of transmission line

connecting bus i and j. The total number of transmission lines is denoted by NL.
2.7 | Calculation of fitness function value

The fitness value is calculated as given below:

F1 ¼ Ft;cost þ λeq ∑N
i¼1Pi−PD−PL

� �2
þ λpoz ∑N

i¼1 Plimit
poz

� �� �2
þ λV ∑NB

i¼1 V limit
i

� �� �2
þ λLF ∑NL

i¼1 LFlimit
i; j

� �� �2
(10)

As per Equation 10, Vi
limitand Vi,max are meant to be equal, and if in case Vi is higher than the maximum limit and

if Vi is lesser than the minimum limited defined, then it should be defined as Vi,min. Following is the information regard-
ing penalty factor values.
Test System
 λeq
 λpoz
 λV
 λLF
11‐units
 1000
 –
 –
 –
IEEE‐30 bus
 1000
 1000
 500
 500
IEEE‐118 bus
 2000
 1500
 500
 500
Through the following equations, the inequality constraints limits can be calculated.

Plimit
poz ¼

min Pi − PL
i;k;P

U
i;k − Pi

� �
; if PLi;k ≤ Pi ≤ PU

i;k

0 otherwise

2
664 (11)

LFlimit
i; j ¼

1 if LFi; j ≥ LFmax
i; j

0 otherwise

2
664 (12)
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2.8 | CEED problem

The formulation of CEED problem is as follows:

Minimize C F1;F2ð Þ (13)

where F 1 denotes the objective function to minimize cost and F 2 denotes the objective function for emission minimi-
zation. By introducing price penalty factor via (h), the bi‐objective CEED problem can be changed into singular objec-
tive optimization problem and is given in Equation 14. The procedure to calculate “h” value is given in Venkatesh et al.5

Minimize Ft ¼ ∑N
i¼1 w*F1 þ h* 1 − wð Þ*F2ð Þ (14)

Here, the “w” value denotes the “objective function,” which is given more significance. If the value of w is equal to 1,
the problem turns into classical ELD and reduces only the fuel cost. If zero value is assigned to w, then the problems
change to ED, which decreases only the emission. The w value is reduced in CEED from steps 1 to 0, and for each dec-
rement, a compromised solution is created. Finally, the fuzzy selection method, as mentioned in Section 2.9, is utilized
to determine the BCS from a group of solutions. The fuel cost value increases and the emission rate decreases simulta-
neously when w is decreased in a step‐by‐step manner.
2.9 | Selection of best compromised solution

The solution achieved from single objective function cannot be enhanced without losing the solution accuracy of the
other objective. For practical implementation, one solution has to be selected from a set of compromised solutions such
that it fulfills all the objectives to some level; such a solution is known as the BCS. It is important to choose BCS among
the available ones, and decision making plays a significant role here. Here, the fuzzy method was chosen to select one
BCS. Since the situation was vague at the time of decision‐making process, the ith objective function f i of individual k is
denoted through a membership function, ie, μki as defined earlier in Equation 15:

μki ¼

1 fi ≤ fmin
i

fmax
i − f i

fmax
i − fmin

i

fmin
i < fi < fmax

i

0 f i ≥ fmax
i

8>>><
>>>:

(15)

For every nondominated solution k, the researchers considered standardized membership function μk as per Equa-
tion 16.

μk ¼ ∑NF
i¼1μ

k
i

∑p
k¼1∑

NF
i¼1μ

k
i

(16)

In the equation, the number of objective functions is denoted through NF whereas the number of nondominated
solutions is denoted via p. The BCS can be identified when the solution has the maximum value of μk.
3 | LOGISTIC MAP METHOD TO PRODUCE CHAOTIC VARIABLES

Chaos occurs in nonlinear dynamic system. It has deterministic value, random‐like movement, nonperiod characteris-
tics and is surrounded. It is more sensitive to its preliminary condition. The performance of heuristic optimization algo-
rithm can be enhanced by combining the chaotic variables generated by logistic map.38 The expression of logistic map is
given in Equation 17.

αnþ1 ¼ 4*αn* 1 − αnð Þ (17)

where αn is a chaotic variable. It is distributed between [0, 1]. The initial conditions to generate chaotic variable are αn∈
(0, 1) and αn∉{0, 0.25, 0.5, 0.75, 1}, where “n” denotes the iteration number.
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4 | CHAOTIC SELF ‐ADAPTIVE INTERIOR SEARCH ALGORITHM—AN
INTRODUCTION

Being an optimization technique, ISA has two stages and is primarily motivated by decoration and interior design.39 The
initial stage is “composition stage” where the composition of elements (solution vectors) is altered to get an environ-
ment that looks enhanced (better fitness value). The final stage is mirror search in which it mimics the work of the mir-
ror worker. The mirror worker utilizes different mirrors to create a more attractive environment. It is imperative that
the mirrors are positioned in such a way that it is present in between “each element” and the “fittest element” in order
to bring furthermore catchy environment. The details about ISA, algorithm steps, and pseudo code are given in the lit-
erature.39 The advantage of ISA with that of other algorithms is that it has only one tuning parameter (α). Normally, an
optimal α value is chosen from 0 to 1. In the proposed CSAISA, the tuning parameter α value was generated between 0
and 1 using logistic map method, and the value of α gets self‐adaptively changed on the basis of the fitness values
obtained. The flow chart for the proposed CSAISA is shown in Figure 1.
4.1 | Summary of computational steps of CSAISA for CEED problem

Step 1: Read system data.

Start w = 1 to 0 with a decrement value of −0.001.

Step 2: Randomly generate elements (solutions) between lower bound (LB) and upper bound (UB). Check equality
and inequality constraints violation for all the elements. If any of the elements violate, it is penalized. The fitness
value is calculated for all the elements along with embedded penalizing method as given in (10).

Step 3: The variant with the finest fitness is portrayed as the global best, which is referred as xgb
j, where j and gb rep-

resent jth iteration and global best solution, respectively.
Step 4: Generate α value using logistic map. This procedure is detailed under Section 3.
Step 5: The elements are to be divided in a random manner such as mirror group and composition group. If in case,
the value of r (rand) is below α, then the element is placed under mirror group, and if not, it is segregated under
composition group.

Step 6: In the composition group, the element values are altered within the narrow search space using (18).

xji ¼ LBj þ UBj − LBj
� �

r2 (18)

Step 7: In mirror group, a mirror is placed at any place, ie, in a random manner in between each element and the
global best solution. According to Equation 19, the mirror location for ith element in the jth iteration is provided
herewith.

xjm;i ¼ r3x
j−1
i þ 1 − r3ð Þxjgb (19)

The location of the image for every element is based on the mirror location, which can be devised as follows:

xji ¼ 2xjm;i − xj−1i (20)

Step 8: To some extent, the position of the global best solution gets modified using random walk, which is in asso-
ciation with local search.

xjgb ¼ xj−1gb þ λrn (21)



FIGURE 1 Flow chart for combined economic emission dispatch (CEED) problem using the proposed chaotic self‐adaptive interior search

algorithm (CSAISA)

RAJAGOPALAN ET AL. 7 of 26
In the above equation, the scale factor, which is decided on the basis of solution space size, is denoted through λ. Here, λ
is considered as the value of 0.01 × (UB − LB) whereas rn denotes the random value from 0 to 1.

Step 9: Determine the fitness values for new locations of the elements and images. Check for violation in equality and
inequality constraints. If the fitness value of new location is superior, then replace the previous best with the fitness
value of new location. Otherwise, previous best is to be preserved.

Step 10: Check for maximum number of iterations, and once the maximum is reached, the algorithm should be
stopped, and the results are to be printed. Otherwise, count (1) is verified whether it reached the preset value, which
was 5. If different (set S = 0), then step 4 must be followed in which the next iteration is performed without changing
the “α” value. Alternatively, if it is a yes, then count (2) needs to be verified whether it reached the preset value “2.”
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If different (set S = 1), then counts (1) and (2) are to be reset and step 4 must be followed. A new α value is produced
for the following iteration. If yes (set S = 0; reset count (1) and count (2)), then go to step 4. The next iteration is to be
executed without any change in the “α” value. The steps from 4 to 9 are to be repeated until the stopping criterion is
reached, and it should be ended for weight w loop.

Step 11: The compromised solution is nothing but the result obtained at every w value, and the BCS is chosen on the
basis of the fuzzy logic method.
5 | ANALYSIS OF SOLUTION QUALITY

The performance evaluations ofMoP aremore complicated. To examine and compare the performance ofMoP techniques,
there are several metrics suggested in the literature. Here, three metrics, namely, generational distance (GD), spacing (SP),
and diversity metric (D‐metric), were considered to evaluate the performance of the proposed algorithm with other algo-
rithms considered. These metrics are highly helpful in the evaluation of closeness to the true or reference Pareto‐optimal
front. Further, these are also helpful in the measurement of diversity among the nondominated solutions.
5.1 | Generational distance

This method was proposed by van Veldhuizen and Lamont40 in order to analyze the value of being far off the elements
in the set of nondominated vectors identified from the Pareto‐optimal set. This is denoted as

GD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1d
2
i

q
n

(22)

where n denotes the number of vectors in the set of nondominated solutions found. The Euclidean distance (measured in
objective space) is denoted by di and is measured as the distance between each of these solutions and the nearest member
of the Pareto‐optimal set. It is evident that the value of GD = 0 denotes that the generated elements are placed under
Pareto‐optimal set. In case of small GD value, it can be understood that it has a better convergence to the Pareto front.
5.2 | Spacing

Distribution of the Pareto solutions is another critical factor in these Pareto fronts. This finds out the distance between
the neighboring points in the nondominated Pareto solution set.41 This is calculated as follows:

SP≜
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

S − 1
∑S

i¼1 d−di
� �2r

(23)
ABLE 1 Optimal parameters of proposed and other algorithms

Algorithm

Control Parameters

Case 1
(N = 20, NI = 2000)

Case 2
(N = 30, NI = 500)

Case 3
(N = 30, NI = 2000)

CSAISA αn = 0.21 αn = 0.27 αn = 0.26

ISA α = 0.22 α = 0.22 α = 0.22

DE F = 0.2 F = 0.2 F = 0.2

HSA HMCR = 0.8, PAR = 0.4, b = 0.012 HMCR = 0.8, PAR = 0.4, b = 0.012 HMCR = 0.8, PAR = 0.4, b = 0.012

PSO C1 = 2, C2 = 2, W = 1 C1 = 2, C2 = 2, W = 1 C1 = 2, C2 = 2, W = 1

GA Pc = 0.95, Pm = 0.05 Pc = 0.95, Pm = 0.05 Pc = 0.95, Pm = 0.05

bbreviations: CSAISA, chaotic self‐adaptive interior search algorithm; DE, differential evolution; GA, genetic algorithm; HMCR, harmony memory
onsideration rate; HSA, harmony search algorithm; ISA, interior search algorithm; PAR, pitch adjusting rate; PSO, particle swarm optimization.



RAJAGOPALAN ET AL. 9 of 26
where

di ¼ min j ∑NF
k¼1 Xkij − Xkij

� �
; i; j ¼ 1; 2; …; S (24)
TABLE 2 Optimal generation schedule for ELD for case 1

Generating
Unit, MW

Best Fuel Cost

Proposed CSAISA ISA HSA DE PSO GA

P1 56.9465 57.3520 56.5750 57.5683 57.6582 57.4565

P2 40.5882 40.3501 41.7558 39.8234 41.7560 40.7339

P3 57.9381 58.5628 58.8239 57.3622 57.0840 60.6382

P4 277.9182 278.7029 277.6793 277.6343 279.6482 279.8546

P5 186.7996 189.2024 189.5183 189.2732 189.7429 191.7492

P6 249.2460 249.5435 250.1128 249.9246 249.7420 249.2131

P7 177.6527 176.0364 176.9563 175.6345 176.6402 178.2341

P8 380.7402 379.9651 379.8753 378.7465 377.7493 379.3367

P9 341.7721 340.7782 341.0440 340.8126 341.8462 344.1547

P10 377.8633 378.8541 379.8564 378.1122 378.7465 378.6473

P11 352.5351 350.6525 351.6593 352.8493 350.8284 353.6394

Fuel cost, $/h 12274.40 12274.42 12275.46 12277.92 12276.42 12278.42

Emission, ton/h 2540.41 2539.69 2538.76 2538.74 2534.69 2531.32

Time, s 12.64 12.65 12.65 12.68 12.69 12.71

Abbreviations: CSAISA, chaotic self‐adaptive interior search algorithm; DE, differential evolution; ELD, economic load dispatch; GA, genetic algorithm; HSA,
harmony search algorithm; ISA, interior search algorithm; PSO, particle swarm optimization.

Bold indicates the best solutions generated by each methods.

TABLE 3 Optimal generation schedule for ED for case 1

Generating
Unit, MW

Best Emission

Proposed CSAISA ISA HSA DE PSO GA

P1 250.0000 249.5639 249.5765 249.2256 249.3756 249.2323

P2 209.9829 209.5641 209.2341 209.0785 209.5345 209.1423

P3 250.0000 248.9627 248.7676 248.6894 248.0876 248.4236

P4 169.9912 169.6364 169.0712 169.0586 169.8945 169.6453

P5 142.9608 145.8813 145.5326 145.2794 145.0675 145.9786

P6 166.0797 171.0137 171.6924 171.5923 171.5547 171.3854

P7 142.2710 145.8453 145.3356 145.4902 145.2246 145.3782

P8 316.6614 300.8375 300.5643 300.4168 300.1156 300.2742

P9 275.4746 275.8335 275.5923 275.4901 275.3345 275.1153

P10 300.8140 300.7452 300.2686 300.4233 300.6754 300.7655

P11 275.7644 282.1124 282.2216 282.5901 282.5646 282.3766

Fuel cost, $/h 13046.31 13041.04 13040.46 13040.83 13039.39 13036.95

Emission, ton/h 1659.35 1661.36 1661.96 1661.58 1663.74 1662.96

Time, s 12.66 12.69 12.70 12.69 12.73 12.72

Abbreviations: CSAISA, chaotic self‐adaptive interior search algorithm; DE, differential evolution; ED, emission dispatch; GA, genetic algorithm; HSA, har-
mony search algorithm; ISA, interior search algorithm; PSO, particle swarm optimization.

Bold indicates the best solutions generated by each methods.
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d denotes the mean of all di. S denotes the number of nondominated vectors found so far, and the number of objec-
tives is denoted via NF. When this metric has zero or less than zero value, it is understood that the members of Pareto
front are equally spaced in their current positions. This metric can be used to measure whether the solutions are distrib-
uted in a uniform and smooth manner.

5.3 | Diversity metric

In spite of the fact that there is no optimal Pareto front required for this metric, it has a correlation with Hamming and
Euclidean distance between solutions.42 In a scenario where S number of points is available on a Pareto front and the
space is N‐dimensional (no. of objectives), then the centroid Ci for ith dimension is given by
TABLE 5 Comparison of result for case 1

Method

Best Fuel Cost Best Emission BCS

Fuel Cost, $/h Emission, ton/h Fuel Cost, $/h Emission, ton/h Fuel Cost, $/h Emission, ton/h

Proposed CSAISA 12274.40 2540.41 13046.31 1659.35 12476.29 1913.96

ISA 12274.42 2539.69 13041.04 1661.36 12532.83 1926.86

HSA 12275.46 2538.76 13040.46 1661.96 12535.67 1930.74

DE 12277.92 2538.74 13040.83 1661.58 12536.84 1926.89

PSO 12276.42 2534.69 13039.39 1663.74 12538.12 1926.65

GA 12278.42 2531.32 13036.95 1662.96 12568.83 1936.76

DP44 – – – – 12424.9400 2003.3000

GSA45
– – – – 12422.6626 2002.9499

Abbreviations: BCS, best compromised solution; CSAISA, chaotic self‐adaptive interior search algorithm; DE, differential evolution; DP, dynamic programming;

GA, genetic algorithm; GSA, gravitational search algorithm; HSA, harmony search algorithm; ISA, interior search algorithm; PSO, particle swarm optimization.

Note: “–” Not available in the referred literature.

Bold indicates the best solutions generated by each methods.

TABLE 4 Optimal generation schedule for CEED for case 1

Generating
Unit, MW

BCS

Proposed CSAISA ISA HSA DE PSO GA

P1 145.8432 147.0312 146.4564 147.5733 147.3745 146.3641

P2 125.7652 126.6103 126.3841 126.6855 123.1573 126.6463

P3 168.9363 170.6024 171.2867 170.2890 170.4892 171.6452

P4 201.5166 199.9273 199.4352 199.7902 197.3367 199.9956

P5 163.2154 163.0421 164.6445 163.4531 164.3689 163.0023

P6 199.0507 198.9784 198.7285 198.0701 198.7900 196.3217

P7 161.9231 161.8036 161.2784 161.2265 161.8462 161.3521

P8 358.6520 357.9313 356.5635 357.5873 357.6421 357.4533

P9 313.6074 315.8803 315.7464 315.1890 316.6904 315.5623

P10 345.6316 344.5631 345.7463 344.3781 343.5687 345.4421

P11 315.8764 313.6583 313.2636 313.5834 314.5903 312.4628

Fuel cost, $/h 12476.29 12532.83 12535.67 12536.84 12538.12 12568.83

Emission, ton/h 1913.96 1926.86 1930.74 1926.89 1926.65 1936.76

Time, s 12.69 12.70 12.70 13.08 12.72 12.69

Abbreviations: BCS, best compromised solution; CEED, combined economic emission dispatch; CSAISA, chaotic self‐adaptive interior search algorithm; DE,
differential evolution; GA, genetic algorithm; HSA, harmony search algorithm; ISA, interior search algorithm; PSO, particle swarm optimization.

Bold indicates the best solutions generated by each methods.
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Ci ¼
∑S

j¼1xij
S

; (25)

For i = 1, 2, …, N, xij denotes the ith dimension of the jth point. Then the diversity measuring D‐metric is given by

D −metric ¼ ∑N
i¼1∑

S
j¼1 xij−Ci

� �2
(26)

When the D‐metric value is high, then the Pareto front diversity is also high.
6 | RESULTS AND DISCUSSIONS

The novel algorithm proposed in the current study was applied in the following test systems to solve ELD, ED, and
CEED and to validate the viability and efficiency.
FIGURE 2 Convergence characteristic curve for the ELD (case 1). CSAISA, chaotic self‐adaptive interior search algorithm; DE, differential

evolution; ELD, economic load dispatch; GA, genetic algorithm; HSA, harmony search algorithm; ISA, interior search algorithm; PSO,

particle swarm optimization

FIGURE 3 Convergence characteristic curve for the ED (case 1). CSAISA, chaotic self‐adaptive interior search algorithm; DE, differential

evolution; ED, emission dispatch; GA, genetic algorithm; HSA, harmony search algorithm; ISA, interior search algorithm; PSO, particle

swarm optimization
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Case 1: 11‐generating units with quadratic cost curve and without security constraints;
Case 2: IEEE‐30 bus system with quadratic cost functions, valve point effects, prohibited operating zones, and security
constraints;

Case 3: IEEE‐118 bus system with quadratic cost functions, prohibited operating zones, and security constraints.

The proposed and existing algorithms considered for comparison were coded in MATLAB 7.4 and executed in a per-
sonal computer configured with 1.6 GHz, Pentium‐IV and 4 GB RAM. The optimal control parameters for all the algo-
rithms were obtained by trial and error method and are presented in Table 1.
TABLE 6 Statistical comparison of performance metric (case 1)

Performance Metric Algorithm Best Mean Worst Standard Deviation

GD Proposed CSAISA 0.0176 0.1023 0.2845 0.0028
ISA 0.2394 0.2865 0.3267 0.0586
HSA 0.2186 0.3264 0.3365 0.0732
DE 0.1164 0.2185 0.3056 0.0675
PSO 0.2296 0.2575 0.3223 0.0787
GA 0.3286 0.3654 0.3343 0.0853

SP Proposed CSAISA 0.1037 0.1586 0.3745 0.0172
ISA 0.2744 0.3659 0.4645 0.0354
HSA 0.2967 0.3755 0.4754 0.0467
DE 0.1674 0.2768 0.3863 0.0399
PSO 0.2985 0.3003 0.4779 0.0671
GA 0.3856 0.4887 0.5796 0.0725

D‐metric Proposed CSAISA 575 541 534 354
ISA 467 387 345 316
HSA 326 295 283 267
DE 486 432 405 312
PSO 376 278 258 235
GA 365 225 214 206

Abbreviations: CSAISA, chaotic self‐adaptive interior search algorithm; D‐metric, diversity metric; DE, differential evolution; GA, genetic algorithm; GD, gen-
erational distance; HSA, harmony search algorithm; ISA, interior search algorithm; PSO, particle swarm optimization; SP, spacing.

FIGURE 4 Emission‐cost trade‐off curve obtained using the proposed chaotic self‐adaptive interior search algorithm (CSAISA) (case 1)
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6.1 | Case 1 (11‐generating units)

In this test system, there were 11‐generating units consisted of quadratic cost curve and emission function along with it.
From the previous study,43 the costs related to generators, the emission data, and its generation limits were retrieved.
The total load demand was 2500 MW. The ELD, ED, and CEED problems were executed as discussed under Section
2.8 using the proposed and existing methods considered. The BCS was selected by applying fuzzy method from the
results achieved, ie, by changing the w value from 1 to 0 in small steps. The BCS attained using the proposed CSAISA
was 12476.29 $/h, and corresponding emission was 1913.96 ton/h. The emission‐cost trade‐off curve with BCS generated
by the proposed CSAISA is presented in Figure 4. The optimal generation schedule achieved using the proposed and
existing methods for ELD, ED, and CEED problems is given in Tables 2–4 and also found to be within the limits.
The best cost, emission, and BCS obtained by the proposed and other algorithms were compared. The solution found
by the proposed CSAISA method was better than all other algorithms and is presented in Table 5. The convergence
characteristic curves for the best fuel cost and emission are shown in Figures 2 and 3. It is proven from Figures 2
FIGURE 5 Convergence characteristic curve of IEEE‐30 bus system for ELD (case 2). CSAISA, chaotic self‐adaptive interior search

algorithm; DE, differential evolution; ELD, economic load dispatch; GA, genetic algorithm; HSA, harmony search algorithm; ISA, interior

search algorithm; PSO, particle swarm optimization

TABLE 7 Optimal generation schedule obtained for ELD problem (case 2)

Generating Unit,
MW

ELD

Proposed CSAISA ISA HSA DE PSO GA

Pg1 198.4532 199.2870 199.7300 199.3003 199.0203 199.7392

Pg2 25.1641 25.0000 25.7594 25.8224 25.7392 25.6400

Pg5 19.0000 19.0000 19.2208 19.7292 19.8476 19.8433

Pg8 16.1627 19.5201 19.0488 19.6484 19.6392 19.9843

Pg11 17.7700 13.0006 13.8583 13.8304 13.7201 13.8443

Pg13 14.0000 14.7426 14.0955 14.9498 14.2084 14.9842

PLoss 7.1500 7.1503 7.1535 7.1624 7.1654 7.1682

Fuel cost, $/h 807.47 808.84 810.24 808.92 809.35 810.51

Emission, ton/h 43.62 43.15 42.85 42.36 41.75 39.75

Avg CPU time, min 1.84 1.89 1.94 1.92 1.90 1.91

Abbreviations: CSAISA, chaotic self‐adaptive interior search algorithm; DE, differential evolution; ELD, economic load dispatch; GA, genetic algorithm; HSA,

harmony search algorithm; ISA, interior search algorithm; PSO, particle swarm optimization.

Bold indicates the best solutions generated by each methods.
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and 3 that the proposed CSAISA has a steady and faster convergence characteristic than other algorithms. In order to
further validate the superiority of the proposed algorithm over other algorithms, 100 independent runs were carried out
for each performance metrics to check the accuracy and diversity of the nondominated solutions. The best, worst, mean
and standard deviation obtained for the GD, SP, and D‐metric are shown in Table 6. The best values obtained by the
proposed CSAISA for GD and SP were lesser, and D‐metric value was higher. From these results, it can be concluded
that the proposed algorithm has the capability to generate quality solutions compared with others (Figure 4).
6.2 | Case 2 (IEEE‐30 bus system)

The proposed algorithm was tested on IEEE‐30 bus system with security constraints, quadratic cost function, valve point
loading effects, and prohibited operating zones. In this system, there were totally six thermal generating units with a
load demand of 283.4 MW. As per the literature,46,47 the information regarding line mega volt ampere (MVA) rating
TABLE 8 Optimal generation schedule obtained for ED problem (case 2)

Generating Unit,
MW

ED

Proposed CSAISA ISA HSA DE PSO GA

Pg1 85.9097 92.0837 92.4884 92.2984 92.8228 92.8363

Pg2 63.7636 61.0296 61.2975 61.0821 61.2029 61.2084

Pg5 47.9061 49.0000 49.9755 49.4283 49.8476 49.2928

Pg8 30.0000 30.0000 30.0484 30.4973 30.8373 30.6382

Pg11 27.9705 23.4368 23.1921 23.0283 23.9728 23.8635

Pg13 35.0000 35.0000 35.9483 35.4084 35.1123 35.7453

PLoss 7.1499 7.1501 7.1515 7.1563 7.1574 7.1594

Fuel cost, $/h 918.58 911.68 911.26 911.47 910.68 910.28

Emission, ton/h 21.75 22.78 22.24 21.88 22.18 22.98

Avg CPU time, min 1.83 1.90 1.91 1.91 1.92 1.91

Abbreviations: CSAISA, chaotic self‐adaptive interior search algorithm; DE, differential evolution; ED, emission dispatch; GA, genetic algorithm; HSA, har-

mony search algorithm; ISA, interior search algorithm; PSO, particle swarm optimization.

Bold indicates the best solutions generated by each methods.

FIGURE 6 Convergence characteristic curve of IEEE‐30 bus system for ED (case 2). CSAISA, chaotic self‐adaptive interior search

algorithm; DE, differential evolution; ED, emission dispatch; GA, genetic algorithm; HSA, harmony search algorithm; ISA, interior search

algorithm; PSO, particle swarm optimization



RAJAGOPALAN ET AL. 15 of 26
and the cost curve data were retrieved. From the earlier study,48 the data regarding the prohibited operating zones were
retrieved for all the units. The lower and upper voltage limits were 0.95 and 1.05 pu set for all the busses including slack
bus. The ELD problem, with security constraints, was done by assigning w = 1 in (14). In Table 7, the optimal gener-
ation schedule obtained by proposed and other algorithms is tabulated. Figure 5 gives the convergence characteristics
of the proposed CSAISA and other algorithms. From Figure 5, it can be inferred that the convergence characteristic
of the proposed CSAISA is fast enough and at the same time smooth, when compared with all other algorithms.

From the proposed CSAISA, the optimal generation cost obtained was 807.47 $/h, and the corresponding emission
was 43.62 ton/h. When compared with other algorithms, both the values (optimal generation cost and the correspond-
ing emission value) seem to be better. In the proposed CSAISA, the total transmission loss with regard to the optimal
generation cost was 7.15 MW. This is much lesser when compared with the transmission loss incurred in other algo-
rithms. By substituting w = 0 in Equation 14, the optimal ED was performed. From the proposed CSAISA, the optimal
emission obtained was 21.75 ton/h whereas the corresponding fuel cost value obtained was 918.58 $/h. When compared,
the proposed CSAISA generated better values than other algorithms in terms of optimal emission. This is presented in
Table 8. When reviewing the convergence characteristic curve with reference to optimal ED of the proposed CSAISA, it
TABLE 9 Optimal generation schedule obtained for CEED problem (case 2)

Generating Unit,
MW

BCS

Proposed CSAISA ISA HSA DE PSO GA

Pg1 113.0654 113.0344 113.3938 113.4742 113.1093 113.2918

Pg2 58.745 63.0000 63.6274 63.1983 63.7332 63.7493

Pg5 24.1398 24.8788 24.1974 24.0832 24.9464 24.9363

Pg8 30.0000 30.0000 30.9473 30.8464 30.0839 30.7292

Pg11 27.7560 27.9950 27.0847 27.0183 27.9273 27.0828

Pg13 33.8581 30.3522 30.2974 30.6483 30.8493 30.5473

PLoss 5.1643 5.8604 5.2098 5.8474 5.8392 5.7498

Fuel cost, $/h 836.28 839.92 840.46 840.53 840.74 841.92

Emission, ton/h 24.26 24.31 24.97 24.95 25.09 25.91

Avg CPU time, min 1.94 1.95 1.96 1.95 1.97 1.98

Abbreviations: BCS, best compromised solution; CEED, combined economic emission dispatch; CSAISA, chaotic self‐adaptive interior search algorithm; DE,
differential evolution; GA, genetic algorithm; HSA, harmony search algorithm; ISA, interior search algorithm; PSO, particle swarm optimization.

Bold indicates the best solutions generated by each methods.

FIGURE 7 Emission‐cost trade‐off curve obtained using the proposed chaotic self‐adaptive interior search algorithm (CSAISA) (case 2)



TABLE 10 Line flows obtained by the proposed algorithm for ELD, ED, and BCS (case 2)

Line Number Line Flow Limits, MVA Line Flow, MVA, for ELD Line Flow, MVA, for ED Line Flow, MVA, for CEED

1 130 95 94 113

2 130 110 100 122

3 65 53 56 45

4 130 122 122 128

5 130 116 122 126

6 65 57 56 46

7 90 84 87 87

8 70 65 65 64

9 130 122 124 124

10 32 26 30 27

11 65 53 62 56

12 32 25 28 28

13 65 43 62 46

14 65 24 62 47

15 65 32 54 63

16 65 56 53 62

17 32 22 27 28

18 32 25 26 26

19 32 25 27 26

20 16 15 15 15

21 16 14 13 14

22 16 15 13 14

23 16 14 15 15

24 32 31 27 29

25 32 30 28 29

26 32 28 29 29

27 32 28 27 28

28 32 27 26 28

29 32 18 28 28

30 16 14 13 15

31 16 12 13 12

32 16 13 12 14

33 16 14 13 14

34 16 15 14 14

35 16 15 14 15

36 65 55 51 58

37 16 13 12 14

38 16 13 09 14

39 16 13 09 15

40 32 30 30 30

41 32 31 27 30

Abbreviations: CEED, combined economic emission dispatch; ED, emission dispatch; ELD, economic load dispatch; MVA, mega volt ampere.
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seems to be rapid and smooth in comparison with other algorithms as illustrated in Figure 6. The loss resulted in the
minimum emission gained by the proposed CSAISA was 7.1499 MW, which is less than other algorithms. By varying
w and applying the fuzzy logic, the BCS value obtained using the proposed CSAISA was 836.28 $/h and 24.26 ton/h,
which is better than the results of all other algorithms shown in Table 9. The trade‐off curve of the proposed CSAISA
is shown in Figure 7. The prohibited operating zones limits and active power generation limits were also examined for
ELD, ED, and CEED problems and found to be well within the bounds. In the proposed algorithm, the total transmis-
sion loss with regard to the optimal solution of ELD, ED, and CEED is much lesser compared with other algorithms.
The security constraints (the line flows and load bus voltages) resultant to the optimal solutions gained by the proposed
and other algorithms were examined and found to be well inside the limits stated. The line flows corresponding to the
proposed algorithm alone are shown in Table 10 for ELD, ED, and CEED problems. The load bus voltages, resultant to
the optimal solution done using the proposed CSAISA for CEED problem, are shown in Figure 8. It is proven from
Figure 8 that the load bus voltages are within the limits considered. The performance metric tests were conducted for
FIGURE 8 Load bus voltage obtained using the proposed chaotic self‐adaptive interior search algorithm (CSAISA) for best compromised

solution (BCS) (case 2)

TABLE 11 Statistical comparison of performance metric (case 2)

Performance Metric Algorithm Best Worst Mean Standard Deviation

GD Proposed CSAISA 0.1654 0.1874 0.2865 0.0268
ISA 0.2258 0.2586 0.4653 0.0372
HSA 0.2454 0.3267 0.5297 0.0475
DE 0.2243 0.2745 0.4050 0.0392
PSO 0.3185 0.3164 0.3986 0.0845
GA 0.3283 0.3237 0.4465 0.0934

SP Proposed CSAISA 0.2685 0.2767 0.3195 0.0298
ISA 0.3859 0.3748 0.5986 0.0356
HSA 0.2984 0.3867 0.5488 0.0552
DE 0.2847 0.3436 0.4956 0.0305
PSO 0.3476 0.3566 0.4967 0.0427
GA 0.3696 0.3745 0.4995 0.0992

D‐metric Proposed CSAISA 756 695 557 379
ISA 423 365 285 264
HSA 352 263 243 236
DE 426 384 346 316
PSO 434 278 324 302
GA 463 394 363 286

Abbreviations: CSAISA, chaotic self‐adaptive interior search algorithm; D‐metric, diversity metric; DE, differential evolution; GA, genetic algorithm; GD, gen-
erational distance; HSA, harmony search algorithm; ISA, interior search algorithm; PSO, particle swarm optimization; SP, spacing.
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all the algorithms and are shown in Table 11. The best value obtained by the proposed CSAISA for GD and SP was
lesser, and D‐metric value was higher. It can be concluded from the above tests that the proposed algorithm is capable
enough to generate quality solutions compared with other algorithms. Further, the proposal algorithm has better con-
vergence speed and execution time.
TABLE 12 Optimal generation schedule obtained for ELD problem (case 3)

Generating Unit,
MW

ELD

Proposed CSAISA ISA HSA DE PSO GA

Pg10 118.3499 111.4335 111.9484 111.5483 111.4938 111.6473

Pg12 74.9394 76.6429 76.9550 76.9394 76.8658 76.7392

Pg25 50.0374 51.3193 51.6473 51.5440 51.2010 51.7754

Pg26 54.0025 72.5879 72.5372 72.3536 72.0373 72.2730

Pg46 50.5251 50.0000 50.5371 50.5373 50.2029 50.0383

Pg49 50.0000 53.8147 53.0747 53.4262 53.2192 53.0202

Pg54 50.0000 50.0000 50.7739 50.4372 50.7493 50.7302

Pg59 50.0000 50.0000 50.4382 50.3739 50.6403 50.0844

Pg61 58.9198 57.1157 57.5489 57.9638 57.0933 57.7393

Pg65 63.4520 52.8252 52.6458 52.4383 52.1943 52.4343

Pg66 50.0000 59.3695 59.4373 59.6497 59.9320 59.2383

Pg69 186.9806 159.6054 159.6203 159.7483 159.7943 159.1930

Pg80 50.0000 52.5218 52.6484 52.5343 52.0837 52.5922

Pg87 50.0000 59.9712 59.8403 59.3225 59.6748 59.7859

PLoss 7.2067 7.2071 7.2083 7.2082 7.2095 7.2137

Fuel cost, $/h 4291.64 4329.99 4367.25 4340.63 4372.03 4385.65

Emission, ton/h 306.51 301.93 301.52 301.85 300.84 299.38

Avg CPU time, min 3.22 3.23 3.23 3.24 3.26 3.25

Abbreviations: CSAISA, chaotic self‐adaptive interior search algorithm; DE, differential evolution; ELD, economic load dispatch; GA, genetic algorithm; HSA,
harmony search algorithm; ISA, interior search algorithm; PSO, particle swarm optimization.

Bold indicates the best solutions generated by each methods.

FIGURE 9 Convergence characteristic curve of IEEE‐118 bus system for ELD (case 3). CSAISA, chaotic self‐adaptive interior search

algorithm; DE, differential evolution; ELD, economic load dispatch; GA, genetic algorithm; HSA, harmony search algorithm; ISA, interior

search algorithm; PSO, particle swarm optimization
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6.3 | Case 3 (IEEE‐118 bus system)

This system consisted of 14 generators and 186 transmission lines. In this system, quadratic cost function with
prohibited operating zones and security constraints was considered. The total load demand was 950 MW. The system
data are available in literature.44,45,49 The voltage limits were set as 0.95 and 1.05 pu respectively for all the busses
TABLE 13 Optimal generation schedule obtained for ED problem (case 3)

Generating Unit,
MW

ED

Proposed CSAISA ISA HSA DE PSO GA

Pg10 70.9063 69.2964 69.2983 69.3928 69.5387 69.1242

Pg12 50.0296 50.3507 50.6482 50.0747 50.8330 50.2310

Pg25 79.5189 77.9228 77.8463 77.0102 77.6372 77.7939

Pg26 93.1976 93.2497 93.8494 93.3242 93.5463 93.5498

Pg46 64.5653 64.5154 64.4943 64.3536 64.4363 64.5302

Pg49 50.0000 50.2352 50.8473 50.7483 50.4373 50.9301

Pg54 71.2999 69.5680 69.7938 69.5373 69.4422 69.6493

Pg59 73.1069 72.7860 72.6480 72.6483 72.5473 72.6420

Pg61 71.4609 72.5459 72.7203 72.5446 72.4262 72.4383

Pg65 89.7778 85.4308 85.6339 85.6383 85.5363 85.3262

Pg66 50.0000 52.2386 52.5327 52.2298 52.6252 52.4397

Pg69 69.1690 70.7889 70.7302 70.7339 70.7353 70.3092

Pg80 74.1178 78.2788 78.5438 78.6483 78.7648 78.5373

Pg87 50.0569 50.0000 50.6483 50.7483 50.3232 50.2933

PLoss 7.2069 7.2072 7.2173 7.2279 7.2506 7.2847

Fuel cost, $/h 4549.68 4548.13 4534.76 4528.93 4468.17 4343.46

Emission, ton/h 23.72 25.49 26.69 25.84 28.85 32.72

Avg CPU time, min 3.22 3.24 3.28 3.26 3.34 3.53

Abbreviations: CSAISA, chaotic self‐adaptive interior search algorithm; DE, differential evolution; ED, emission dispatch; GA, genetic algorithm; HSA, har-
mony search algorithm; ISA, interior search algorithm; PSO, particle swarm optimization.

Bold indicates the best solutions generated by each methods.

FIGURE 10 Convergence characteristic curve of IEEE‐118 bus system for ED (case 3). CSAISA, chaotic self‐adaptive interior search

algorithm; DE, differential evolution; ED, emission dispatch; GA, genetic algorithm; HSA, harmony search algorithm; ISA, interior search

algorithm; PSO, particle swarm optimization
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including slack bus. The maximum rating of all the transmission lines was taken as 99 MVA. The ELD, ED, and CEED
problems with security constraints and prohibited operating zones were carried out as discussed under Section 2.8. The
optimal cost attained by the proposed CSAISA was 4291.64 $/h, and its emission value was 306.51 ton/h, which is min-
imum compared with other algorithms. In Table 12, the optimal values for proposed and other algorithms considered
are tabulated. Figure 9 shows the convergence characteristic of the proposed and other algorithms for ELD problem.
From Figure 9, it can be concluded that the proposed CSAISA can gain steady‐state optimal solution at the earliest
TABLE 14 Comparison of CEED result for case 3

Generating Unit,
MW

BCS

Proposed CSAISA ISA HSA DE PSO GA

Pg10 102.6468 100.3485 100.3839 100.5473 100.7363 100.8578

Pg12 59.1816 58.8270 58.6583 58.5372 58.2314 58.3547

Pg25 50.0599 50.8309 50.8302 50.8474 50.5242 50.9943

Pg26 70.3498 73.3932 73.5292 73.0932 73.3238 73.4352

Pg46 63.1042 59.1153 59.1846 59.9323 59.7272 59.4636

Pg49 51.0080 50.1468 50.9231 50.7397 50.2726 50.6254

Pg54 50.0000 50.7470 50.2832 50.5360 50.8362 50.5363

Pg59 51.0166 53.2494 53.0220 53.2324 53.5242 53.1321

Pg61 83.9497 85.1551 85.8231 85.4235 85.4355 85.3546

Pg65 98.1409 92.1870 92.6484 92.5426 92.0388 92.7522

Pg66 58.6019 61.3470 61.9233 61.5243 61.6493 61.4368

Pg69 119.1476 121.8597 121.4353 121.6357 121.7468 121.2463

Pg80 50.0000 50.0000 50.4352 50.5367 50.6484 50.7468

Pg87 50.0000 50.0000 50.5327 50.6382 50.8202 50.4373

PLoss 7.2070 7.2069 7.3536 7.6388 7.8447 7.4357

Fuel cost, $/h 4352.39 4353.57 4366.27 4387.44 4427.26 4453.85

Emission, ton/h 135.23 136.46 144.85 153.42 176.75 184.38

Avg CPU time, min 3.22 3.24 3.27 3.24 3.32 3.35

Abbreviations: BCS, best compromised solution; CEED, combined economic emission dispatch; CSAISA, chaotic self‐adaptive interior search algorithm; DE,
differential evolution; GA, genetic algorithm; HSA, harmony search algorithm; ISA, interior search algorithm; PSO, particle swarm optimization.

Bold indicates the best solutions generated by each methods.

FIGURE 11 Emission‐cost trade‐off curve obtained using the proposed chaotic self‐adaptive interior search algorithm (CSAISA) (case 3)
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when compared with other algorithms. In the proposed CSAISA, the optimal emission value of 23.71 ton/h was
achieved with the fuel cost of 4549.68 $/h. As per Table 13, the optimal emission value obtained when using the pro-
posed CSAISA is better when compared with other algorithms. A faster convergence characteristic curve was observed
for ED in case of the proposed CSAISA whereas it was slow in other algorithms as inferred through Figure 10. w, the
weight factor, got differed in steps, and the best BCS was finalized using the fuzzy method. The fuel cost was 4352.39
$/h, and the corresponding emission was 135.23 ton/h in BCS, which was obtained with the help of the proposed
CSAISA. When compared between others and the proposed CSAISA, the BCS obtained was better in the latter, which
is tabulated in Table 14. In Figure 11, the trade‐off curve of the proposed CSAISA is shown. According to Tables 12–14,
the proposed CSAISA had exhibited best fuel cost, emission, and BCS values when compared with other algorithms. The
prohibited operating zones limits and active power generation limits were also examined for ELD, ED, and CEED prob-
lems and found to be well within the bounds. In the proposed algorithm, the total transmission loss with regard to the
optimal solution of ELD, ED, and CEED is much lesser compared with other algorithms. With regard to the security
constraints, the line flows corresponding to the optimal values were examined for all algorithms and found to be within
the limits specified for ELD, ED, and CEED problems. The line flows corresponding to BCS obtained by the proposed
algorithm were within the limits and are shown in Figure 12.
FIGURE 12 Line flow obtained using the proposed chaotic self‐adaptive interior search algorithm (CSAISA) for best compromised

solution (BCS) (case 3)

FIGURE 13 Load bus voltage obtained using the proposed chaotic self‐adaptive interior search algorithm (CSAISA) for best compromised

solution (BCS) (case 3)



TABLE 15 Statistical comparison of performance metric (case 3)

Performance Metric Algorithm Best Worst Mean Standard Deviation

GD Proposed CSAISA 0.1154 0.1494 0.2865 0.0124
ISA 0.2176 0.2764 0.3965 0.0243
HSA 0.2443 0.2675 0.3926 0.0284
DE 0.1354 0.2346 0.3545 0.0214
PSO 0.2243 0.2453 0.3875 0.0357
GA 0.3198 0.3127 0.4387 0.0392

SP Proposed CSAISA 0.1385 0.1765 0.3584 0.0102
ISA 0.2856 0.3276 0.4745 0.0258
HSA 0.2934 0.3635 0.4854 0.0291
DE 0.1575 0.2457 0.3956 0.0242
PSO 0.2696 0.2745 0.4864 0.0343
GA 0.3864 0.4535 0.5764 0.0387

D‐metric Proposed CSAISA 878 785 753 368
ISA 439 385 342 327
HSA 395 326 269 240
DE 567 492 463 343
PSO 573 457 425 342
GA 459 536 388 304

Abbreviations: CSAISA, chaotic self‐adaptive interior search algorithm; D‐metric, diversity metric; DE, differential evolution; GA, genetic algorithm; GD, gen-
erational distance; HSA, harmony search algorithm; ISA, interior search algorithm; PSO, particle swarm optimization; SP, spacing.
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The load bus voltage of the proposed CSAISA and other algorithms for ELD, ED, and CEED problems was examined
and found to be within the limits specified. The load bus voltage of the proposed CSAISA is illustrated in Figure 13. The
performance metric tests were conducted for all the algorithms and are shown in Table 15. The best value obtained by
the proposed CSAISA for GD and SP was lesser, and D‐metric value was higher. It can be concluded from the above
tests that the proposed algorithm is capable enough to generate quality solutions compared with other algorithms. Fur-
ther, the proposed algorithm exhibits better convergence speed and execution time.
7 | CONCLUSION

In the current study, a novel CSAISA was proposed and successfully applied in 11‐generating units and IEEE‐30 bus
and IEEE‐118 bus systems to solve the CEED problems with nonlinearity such as valve point effects, prohibited oper-
ating zones, and security constraints. Fuzzy decision‐making method was chosen for the current study to finalize the
BCS from the set of compromise solutions obtained through differentiation of w value from 1 to 0. A comparison was
performed with the optimal results retrieved from ISA, HSA, DE, PSO, and GA as well as the proposed algorithm with-
out violating the constraints.

The following are the specific findings:
In all the case studies, the proposed CSAISA produced better quality solution for ELD, ED, and CEED problems con-

sidered. The performance of the proposed and other algorithms was also analyzed by comparing performance metrics.
The proposed CSAISA has fast convergence characteristics and less computational time compared with other algo-

rithms. In future, to validate the efficiency of the proposed algorithm further, it can be applied to solve optimal power
flow problems in smart grid environment and optimization problems related to electric vehicles.
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LIST OF SYMBOLS AND ABBREVIATIONS
ai, bi, ci, ei, and f i
 fuel cost coefficients of the ith unit

BSA
 backtracking search optimization

BCS
 best compromised solution

CEED
 combined economic emission dispatch

Ci
 centroid

CIABC
 modified artificial bee colony based on chaos

CSAISA
 chaotic self‐adaptive interior search algorithm

CSADHS
 chaotic self‐adaptive differential harmony search algorithm

count (1) and count (2)
 no. of counts made for consecutive generations and no. of times better harmony has

generated

DP
 dynamic programming

D‐metric
 diversity metric

di
 Euclidean distance

DE
 differential evolution

EP
 evolutionary programming

ED
 emission dispatch

ELD
 economic load dispatch

FPA
 flower pollination algorithm

F i(Pi)
 fuel cost

F t,cost
 total fuel cost

F 1
 objective function for cost minimization

F 2
 objective function for emission minimization

fmin
i and fmax

i
 minimum and maximum value of ith objective function among all nondominated solutions

GA
 genetic algorithm

GD
 generational distance

GSA
 gravitational search algorithm

HSA
 harmony search algorithm

H
 price penalty factor

ISA
 interior search algorithm

IPSO
 improved particle swarm optimization

K
 index of the prohibited operating zones

LP
 linear programming

LFi,j
 apparent power flow from ith bus to jth bus.

LFlimit

i; j
 line flow limits

LFmax

i; j
 maximum rating of transmission line connecting bus i and j

LB
 lower bound

MMACO_R
 multiobjective multipopulation–based ant colony optimization

MoP
 multiobjective optimization problem

MBA
 mine blast algorithm

MHSA
 modified harmony search method

MPSO
 modulated particle swarm optimization

MVA
 mega volt ampere

N
 no. of elements generated/population, no. of generating units

Nb
 total no. of busses

NF
 no. of objective functions

NI
 no. of iterations

NB
 total no. of PQ busses

NL
 total no. of transmission lines

ni
 no. of prohibited operating zones in the ith generating unit

n
 no. of vectors in the nondominated solutions
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Pi
 power output of the ith generator

PD
 total demand

PL
 transmission loss

Pi
 total real power generation at bus i

Pdi
 total real power demand at bus i

p
 the no. of nondominated solutions

PSO
 particle swarm optimization

poz
 prohibited operating zones

Plimit
poz
 prohibited operating zones limits
Pi,min and Pi,max
 ith generator minimum and maximum power limits

PL
i;k and PU

i;k
 lower and upper bounds of kth prohibited operating zones of unit i

Qgi
 total reactive power generation at bus i

Qdi
 total reactive power demand at bus i

RCCRO
 real‐coded chemical reaction algorithm

RCBA
 hybrid bat algorithm

r,r2,r3
 random no between 0 to 1

SOS
 symbiotic organisms search

SP
 spacing

S
 no. of nondominated vectors

UB
 upper bound

|Vj|
 voltage magnitude at bus j

|Vi|
 voltage magnitude at bus i

Vi,min and Vi,max
 minimum and maximum voltage limits of ith PQ bus

xgb

j
 global best element in the jth iteration

W
 weight factor

|Yi j|
 magnitude of the ijth element of Ybus

αi,βi,γi,δi,and λi
 emission curve coefficients of the ith generator

α (alpha)
 tuning parameter

δi
 voltage angle at bus i

δj
 voltage angle at bus j

λeq
 penalty factor for equality constraints

λpoz
 penalty factor for prohibited operating zones

λV
 penalty factor for voltage constraints

λLF
 penalty factor for line flow constraints

μki
 membership function

θij
 angle of the ijth element of Ybus

ƐBiODE
 multiobjective Ɛ‐constrained method
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