Please use this identifier to cite or link to this item:
Title: A multiple mitosis genetic algorithm
Authors: Kamil, K. 
Chong, K.H. 
Hashim, H. 
Shaaya, S.A. 
Issue Date: 2019
Abstract: Genetic algorithm is a well-known metaheuristic method to solve optimization problem mimic the natural process of cell reproduction. Having great advantages on solving optimization problem makes this method popular among researchers to improve the performance of simple Genetic Algorithm and apply it in many areas. However, Genetic Algorithm has its own weakness of less diversity which cause premature convergence where the potential answer trapped in its local optimum. This paper proposed a method Multiple Mitosis Genetic Algorithm to improve the performance of simple Genetic Algorithm to promote high diversity of high-quality individuals by having 3 different steps which are set multiplying factor before the crossover process, conduct multiple mitosis crossover and introduce mini loop in each generation. Results shows that the percentage of great quality individuals improve until 90 percent of total population to find the global optimum. © 2019 Institute of Advanced Engineering and Science. All rights reserved.
DOI: 10.11591/ijai.v8.i3.pp252-258
Appears in Collections:UNITEN Scholarly Publication

Show full item record

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.