Please use this identifier to cite or link to this item:
Title: A swarm-based artificial immune system for solving multimodal functions
Authors: Yap, D.F.W. 
Koh, S.P. 
Tiong, S.K. 
Prajindra, S.K. 
Issue Date: 2011
Journal: Applied Artificial Intelligence Volume 25, Issue 8, September 2011, Pages 693-707 
Abstract: Artificial Immune Systems (AIS) have attracted enormous attention among researchers because the algorithms are able to improve global searching ability and efficiency. Nevertheless, the rate of convergence for AIS is relatively slow compared to other metaheuristic algorithms. On the other hand, genetic algorithms (GAs) and particle swarm optimization (PSO) have been used successfully in solving optimization problems, although they tend to converge prematurely. Therefore, the good attributes of AIS and PSO are merged in order to reduce this limitation. It is observed that the proposed hybrid AIS (HAIS) achieved better performances in terms of convergence rate, accuracy, and stability against GA and AIS by comparing the optimization results of the mathematical functions. A similar result was achieved by HAIS in the engineering problem when compared to GA, PSO, and AIS. Copyright © 2011 Taylor & Francis Group, LLC.
DOI: 10.1080/08839514.2011.606662
Appears in Collections:COE Scholarly Publication

Show full item record

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.