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A B S T R A C T

Autonomous agents are being widely used in many systems, such as ambient assisted-living systems, to perform
tasks on behalf of humans. However, these systems usually operate in complex environments that entail un-
certain, highly dynamic, or irregular workload. In such environments, autonomous agents tend to make deci-
sions that lead to undesirable outcomes. In this paper, we propose a fuzzy-logic-based adjustable autonomy
(FLAA) model to manage the autonomy of multi-agent systems that are operating in complex environments. This
model aims to facilitate the autonomy management of agents and help them make competent autonomous
decisions. The FLAA model employs fuzzy logic to quantitatively measure and distribute autonomy among
several agents based on their performance. We implement and test this model in the Automated Elderly
Movements Monitoring (AEMM-Care) system, which uses agents to monitor the daily movement activities of
elderly users and perform fall detection and prevention tasks in a complex environment. The test results show
that the FLAA model improves the accuracy and performance of these agents in detecting and preventing falls.

1. Introduction

Many studies have reported a great increase in the median age of the
humans, especially those who are living in developed economies [1,2]. For
instance, 17.4% of the population in the European Union have been
classified as elderly (aged 65 years and above) in 2010, and this ratio is
expected to reach 28.8% in 2050 [3]. As the world population continues to
age, the number of elderly who are living independently or are left on their
own at daytime has also been rising [4]. Some elderly people are facing
health problems and require medical attention. To address the special
needs of this population, many elderly remote care systems have been
proposed, and some examples of these systems are presented in [5]. The
elderly tend to show trembling, rigidity, and sluggishness in their move-
ment which expose them to the risks of falling. This problem affects their
ability to live independently, reduces their quality of life and can be ha-
zardous and fatal [1,6]. Several elderly remote care systems have been
proposed in the attempt to solve or mitigate this problem, and some ex-
amples of these systems are presented in [2]. These systems monitor the
elderly’s movement activities and daily routine patterns to prevent and
detect fall situations.

Autonomous agents and multi-agent technologies have significant
roles and contributions in many healthcare and elderly remote care
systems [7]. For example, Kaluža et al. [3] propose an agent-based el-
derly remote care system that supports the independent living of the
elderly. The system monitors their movement activities and auto-
matically notifies medical personnel in case of a fall. Typically, agents
in discrete and deterministic environments autonomously complete a
substantial amount of tasks due to their prior knowledge about their
surroundings. However, agents in complex environments that have the
characteristics of uncertain, highly dynamic, or irregular workload tend
to make decisions that lead to unwanted consequences [8]. These
agents are deployed to handle some primitive, deducible, or critical
tasks [9]. To make appropriate decisions amid such problems, agents
must operate at different autonomy levels and with different autonomy
properties [10,11,12]. In response to this need, several studies have
attempted to model adjustable autonomy, which enables agents to
operate at different autonomy levels. Some of these works have been
reviewed in [8]. The adjustable autonomy in a multi-agent system is
managed by grading the modifiable autonomy of agents within a spe-
cified range [11]. The grading process involves measuring the
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boundaries of autonomy parameters and estimating the extent to which
autonomy is distributed and adjusted among the agents [13,14].

In this paper, we propose the fuzzy-logic-based adjustable au-
tonomy (FLAA) model to manage the autonomy of agents in multi-agent
systems that operate in complex environments. This model employs
fuzzy logic to linearly measure the autonomy of the agents. We im-
plement and test this model in the automated elderly movements
monitoring (AEMM-Care) system. The system observes the movement
activities of the elderly to detect or prevent a fall. Given the intricate
nature of fall detection and prevention tasks, the ambiguity of sensory
data, and other challenges related to the application domain, we prove
that the FLAA model improves the performance of the agents and the
accuracy of the AEMM-Care system.

The rest of this paper is organized in the following order. Section 2
reviews the literature on agent-based elderly remote care systems, cites
some previous attempts in applying fuzzy logic to manage the au-
tonomy of agents and describes the needs and necessities of using ad-
justable autonomy. Section 3 illustrates the proposed FLAA model for
multi-agent systems which includes the representation, measurement,
distribution, and adjustment of autonomy. Section 4 discusses the
prototype design, implementation, and application of the adjustable
FLAA model in the AEMM-Care system. Section 5 presents the AEMM-
care system test results and discusses the research outcomes. Section 6
concludes the paper and offers recommendations for future work.

2. Literature review

Our literature review reveals that the agent-based healthcare sys-
tems being used today are not using fuzzy logic to control the auton-
omous behavior of agents. Previous studies have also largely ignored
the possible application of this technique in managing adjustable au-
tonomy in multi-agent systems. To address these gaps, our literature
review focuses on three topics of multi-agent elderly remote care sys-
tems, the use of fuzzy logic to control agents' autonomy, and a brief
study of adjustable autonomy.

2.1. Multi-agent elderly remote care systems

Recent studies on healthcare or remote care have extensively ex-
plored the application of multi-agent systems in the medical field. Some
of these studies have proposed and examined the use of autonomous
agents to assist humans in their daily activities [5]. For example, Ar-
mentia et al. [15] propose a multi-agent elderly remote care system
with a component-based architecture. The agents have adaptability and
replication mechanisms. The adaptability mechanism helps agents
proactively respond to critical situations involving the elderly based on
the relationships among certain events. The replication mechanism
provides these agents with alternative options in case of failures,
emergencies, or resource constraints. The test results highlight the
importance of applying advanced autonomous solutions in elderly re-
mote care and general healthcare systems.

Monitoring the falling risks of the elderly presents a major challenge
in healthcare research [1]. Those elderly with poor balance, weak legs,
and other impairments in their mobility are highly susceptible to falling
situations that may lead to severe or life-threatening injuries [2]. These
risks underscore the need to develop a flexible, reliable and efficient
system that monitors the movement activities of the elderly and helps
them avoid perilous situations [16]. However, the monitoring systems
that are currently available in the market have been criticized for their
high cost, discomfort, or imprecision. Nevertheless, the fall detection
methods proposed in the literature are generally accurate due to the
simplicity of and similarities in falling patterns (i.e., most falls begin
with a person losing his/her balance and ends with the same person
lying on the ground). Some of these methods have even reported fall
detection accuracies of as high as 90% [1]. By contrast, fall prevention
is a complex process which success hinges on probabilistic and

predictive methods. Given that an individuals’ susceptibility to falling
can be driven by physical, behavioral, and psychological factors. Pre-
vious studies have closely examined the daily movement activities and
patterns of humans to successfully detect or prevent a fall. These
movement activities are captured by employing various types of
wearable, visual, and ambient devices [2,4]. Several techniques, such as
autonomous agents and machine learning algorithms, have also been
applied to tracking movement activities and identifying falling situa-
tions.

Kaluža et al. [3] propose a context-aware agent model for an elderly
fall detection and prevention system that observes the movement ac-
tivities and assesses the ability of the elderly to live independently. This
system includes four groups of agents that are assigned to specific tasks.
The first group gathers information on the movement activities of the
elderly, the second group contextualizes the gathered information, the
third group evaluates the movement ability of the elderly and alerts
them when a risk is present, and the fourth group checks for any irre-
gularities in the daily routine and behavior of the elderly. Although this
system can successfully distinguish a movement-impaired individual
from a healthy one, its four groups of agents are not using the same
algorithm, thereby leading to unsatisfactory outcomes. Moreover, the
differences in the autonomy and learning abilities of these agents can
drive them into making inconsistent decisions that expose the system to
disturbances and unnecessary procedures (e.g., merging agents to ad-
dress the conflicts in their decisions) that only extend the overall
computational time.

Cvetković et al. [6] propose a multi-classifier adaptive-training
(MCAT) model that employs support vector machine, decision tree, and
random forest classifiers to improve the movement recognition accu-
racy of elderly fall detection and prevention systems. This model op-
erates in passive and active modes. The passive mode configures the
confidence and adaptation parameters of the classifiers, while the ac-
tive mode runs these classifiers by applying a semi-supervised learning
method. The test results reveal that the MCAT model performs better in
the active mode than in the passive mode only if the confidence and
adaptation parameters are appropriately configured. The MCAT model
achieves an average accuracy score of 82.70%, which exceeds the ac-
curacy score of other self-training algorithms by 10.79%. However, this
model only classifies the patterns of movement activities and ignores
those of other activities.

Lustrek et al. [1] develop a Ubisense system that uses locational
sensors and accelerometers to collect data from an individual. They also
propose a confidence model for fall detection that uses a random forest
classifier for recognizing movement activities and a hidden Markov
algorithm for detecting and ruling out infeasible activity patterns. The
test results show that with a single accelerometer, the proposed con-
fidence model achieves a fall detection accuracy of 79.2%, while with
three accelerometers, this model achieves an average fall detection
accuracy of up to 97.2%. Examining movement activity patterns can
help one contextualize a falling incident and improve the fall detection
accuracy of a system. However, Lustrek et al. only focus on improving
the fall detection accuracy of the system and completely ignore its
performance in fall prevention.

2.2. Fuzzy logic control of agents’ autonomy

Fuzzy logic is a widely used technique for its features of practicality,
durability, computational efficiency, certainty, and easy integration
with other techniques and applications [17]. It consists of fuzzy sets and
a fuzzy inference in which a local model of the system under con-
sideration is represented by fuzzy rules [18,19]. Fuzzy logic provides a
decision-making mechanism that has many uses and benefits. It can (1)
deal with uncertain and vague situations [17], (2) perform mathema-
tical analysis and approximation for linear, nonlinear, or dynamic
problems [9], and (3) construct inference models for solving and con-
trolling problems [20]. Many studies have applied fuzzy logic to

S.A. Mostafa et al. International Journal of Medical Informatics 112 (2018) 173–184

174



investigate the decisions of agents including explicitly control their
autonomy [18], improve their perceptions toward their environments
[19], or limit the number of decision options that are made available to
them [20].

Ho-Sub et al. [19] propose a novel fuzzy logic technique that helps
agents understand and interpret unclear goals from uncertain en-
vironments. This technique applies a set of linguistic representations to
an agent’s set of fuzzy goals and then uses a fuzzy reinforcement
function that processes such goals during the agent’s decision-making
process.

Jaafar and McKenzie [9] propose a fuzzy logic technique that con-
trols the autonomous behavior of agents. Specifically, this technique
arranges the behavior of agents in weighted levels and then manip-
ulates these weights to defuzzify and determine appropriate behaviors
for the agents. Through this defuzzification procedure, the number of
decision options that are available to agents is reduced to a certain
number of possible actions. This technique can guide the agents when
performing specific actions in unknown and complex environments.

Couceiro et al. [18] propose a fuzzy-logic-based algorithm for
managing the autonomy of agents. This algorithm initially applies
context-based evaluation metrics to describe the performance of agents
and then fine-tunes the autonomy constraints based on the described
performance. Multi-robot systems have adopted this technique to co-
ordinate the performance of robots in complex environments and to
help them achieve their goals and overcome obstacles even with limited
coordination.

2.3. Adjustable autonomy

The autonomy of agents has been extensively studied by using
qualitative and quantitative approaches [21]. Qualitative approaches
differentiate various levels of autonomy by comparing the linguistic
variables of quality criteria, while quantitative approaches numerically
express such autonomy to form an advance autonomy measurement
[10]. These approaches contribute to the management of adjustable
autonomy by extending such autonomy within fully autonomous and
non-autonomous limits [12,13]. Subsequently, adjustable autonomy
grants agents a variable range of autonomy levels to act upon [11].
These levels give the options of agents working independently, de-
pendently or being prone to human oversight or intervention [22]. The
autonomy adjustment changes some agents’ activities based on a si-
tuation of exigency, to influence the agents to make desirable decisions
[10]. The components of adjustable autonomy and its application to
multi-agent systems have been construed in many ways to provide the
benefits of [8]:

• Flexibility: Adjustable autonomy facilitates teamwork between
human users and agents in controlling a system and confronting
diverse situations. These parties can function at different autonomy
levels when operating the system.

• Reliability: Adjustable autonomy helps human users maintain their
global control over the agents and adjust the autonomy of these
agents.

• Efficiency: Adjustable autonomy conducts assessments that motivate
the agents to improve their autonomy. The assessment ensures the
advancement of a competent agent over a less competent one be-
cause of its highly exploitable abilities.

3. The fuzzy logic-based adjustable autonomy model

This section explains how autonomy is represented, measured, dis-
tributed, and adjusted in the FLAA model. It also explains the archi-
tecture and operational behaviors of the agents that work according to
the FLAA model.

3.1. Autonomy representation

Representation is an important feature that must be considered
when quantitatively or qualitatively measuring autonomy. In the FLAA
model, the autonomy of an agent is represented through several levels
of fuzzy boundaries that hierarchically manage the autonomy of a
multi-agent system. An agent may either function in a single autonomy
level or switch from one level to another. Each autonomy level imposes
some constraints on the behaviors of agents. However, those agents
with high autonomy have less constrained behaviors, thereby allowing
them to perform a wide range of tasks and actions.

An autonomy level, l, represents a band of autonomy degrees that
follows a set or sets of autonomy properties, P, in which a property
p∈ P. P includes a range of fully autonomous to non-autonomous
abilities that check for possibilities to allow, block, influence, mediate,
increase, suspend, and/or terminate the agents’ behaviors or goals. The
P of an l is configured based on the relationship between tasks and
actions. Table 1 presents the terminologies used in autonomy re-
presentation.

Fig. 1 shows an abstract representation of adjustable autonomy.
Each l is associated to sets of possible tasks and actions

= = … = …l t a a t a a(e.g., { { , , }, { , , },{}})1 1 1 2 2 1 2 and may have over-
lapping and distinct P, t, and/or a. We assume that the setting and
distribution of these elements adhere to the FLAA application domain.

Before representing the autonomy of a multi-agent system, we first
define the term “agent." an agent is a computer software that is capable
of carrying out tasks and executing actions in a flexible and autonomous
manner [23]. The operations of these agents are largely defined by their
architectures [14]. In this study, we use a BDI architecture that includes
three main behaviors, namely, tasks-selection (where an agent examines
and selects the proper tasks), actions-selection (where the agent selects
proper actions to perform these tasks), and actions-execution (where the
agent performs the selected actions) [24]. The agent’s autonomy is
distributed and can be independently adjusted within these behaviors.

Let kϼ represent an agent operating in a certain environment, E, that
is indexed by k, in which k={1, 2, …}. A represents the set of all
actions that can be performed by kϼ to complete its tasks. a denotes an
action, in which a∈A. T represents all possible tasks, in which T= {t1,
t2, …} and a task t ⊆ A. kϼ observes an event ex in E and then acts on
this event by implementing tasks-selection, k

1ϼ , actions-selection, k
2ϼ , and

actions-execution, k
3ϼ . Algorithm 1 shows the basic architecture of an

agent.

Table 1
Terminologies of autonomy representation.

term symbol context relationship

level l a band of autonomy degrees for operational behaviors an operational autonomy of a system
degree ∂ a measurable unit that defines the autonomy states of an agent in a cycle of actions an operator autonomy of agents
property p a particular state of an autonomy degree a characteristic of an operator autonomy
task t a representation for a specific collection of actions to be carried out by an agent an operational compound of a system
action a a sequence of operational activities an operational element of a system
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kϼ decides on a task or action based on the operational autonomy
constraints of the available tasks or actions:

= ∈ …decide x x x X x x c( , ) { : , ɳ (c ) ɳ ( ) },φ k i i 1 1 2 2ϼ Ϫ Ϫ (1)

where decide denotes the selection operation to x relation, ∀ xi ∈ X, x
denotes either the t or a of a selection operation, φ denotes the selection
decision condition, c1, and c2 denote the properties of the selection
decision condition, Ϫ denotes the logical operator that connects each
condition and is restricted by ∧ ∨[ , ] operators, and ɳ denotes the ne-
gation operator (¬) that is either existing or non-existing.

For example, if task t has three actions, namely, a1, a2, and a3, and
an agent decides on actions for t, then the decision can be cognitively
represented as ∧ ¬ ∧a p a p a p( ) ( ) ( )1 1 2 2 3 3 , where p1,2,3 denotes the
properties of different autonomy levels. The case of →l p a: ˙1 denotes an
action with a fully autonomous property, →l p a: ͠2 denotes an action
with a semi-autonomous property, and →l p a: 3 denotes an action with
a non-autonomous property.

3.2. Autonomy measurement

We first define the measurable attributes of autonomy before at-
tempting to measure this concept. We consider knowledge (know) and
authority (can) as the measurable attributes of autonomy because of
their close relationship with the agents’ autonomy [14]. These attri-
butes set the boundaries for the autonomy of agents that are operating
in a certain environment [8]. The values of these attributes are used to
assess the qualifications of an agent to reach a particular autonomy
level. Know is deduced from the level of agreement in the decisions
made by agents, while can is deduced from the external responses
(assessment) to the actions performed by these agents. In other words,
the know condition represents the agents’ autonomy based on internal
desire, while the can condition represents their autonomy based on
external desire; and these conditions altogether satisfy the concept of
adjustable autonomy [11]. We use fuzzy logic to measure the opera-
tional autonomy of a multi-agent system, to assess the autonomy degree

of its agents, and to assign these agents to proper autonomy levels.
Let ω denote a set of active agents in a system, in which an agent

∈ ωkϼ . This system has three autonomy levels, =L l l l{ , , }1 2 3 . Let know
and can denote two fuzzy sets of linguistic input variables that have
High, Medium, and Low qualitative values, in which

=know knowL knowM knowH{ , , } and =can canL canM canH{ , , }. The
membership in high, medium and low levels of autonomy is re-
presented by the trapezoidal right, middle, and left functions in the
following equations [17]:

=
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4

1
2 1
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3

(2)

Following Fig. 1 and Eq. (2), we construct Fig. 2 which shows the fuzzy
logic-based adjustable autonomy. The figure also shows the range of
input know and can variables and the degree of membership in each
output autonomy level, respectively. As we have explained earlier, each
autonomy degree corresponds to a specific set of autonomy properties.

We compute for the knowμ membership degree by measuring the
extent of agreement in the decisions of agents, while we compute for

Fig. 1. The adjustable autonomy of the FLAA model.

Fig. 2. Membership of autonomy levels in the FLAA model.
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the canμ membership degree by evaluating the performance of these
agents:

∑

∑
=

⎧

⎨
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ϼ

(3)

where μf denotes the membership function of the know or can fuzzy sets,
in which μf(x):X→ [0,1], X denotes the adjustable autonomy dimension
(universe of discourse) of a multi-agent system, n denotes the number of
agents that are operating in a system, and m denotes the number of
actions that are performed by an agent.

We then aggregate the autonomy degree of an agent by employing
the following centroid function:

∫
∫

∂ = ∈x l, ,x
x xdx

x dx

μ ( )

μ ( )

x
x

f

x
x

f

1
2

1
2

(4)

where ∂x denotes the centroid of the autonomy region that is bounded
by the interval [x1, x2].

The value of ∂x denotes the autonomy degree of an agent. The au-
tonomy degree sets the l and P options for the agent during a single
phase of its run cycle. The next section discusses the distribution of
autonomy in a multi-agent system.

3.3. Autonomy distribution

The FLAA model distributes autonomy among the agents in a multi-
agent system. This model mainly comprises an autonomy regulator, an
autonomy fuzzifier, an autonomy rule base, and an inference engine.
Fig. 3 shows the proposed FLAA model. The autonomy regulator allows
a human user to manually adjust the autonomy parameters of the
system as explained in Section 3.4. The autonomy fuzzifier receives a
fuzzy set of know and can inputs and measures the overlap among
different autonomy levels (as shown in Fig. 2). The autonomy rule base
contains 15 rules, and a rule has the form of IF knowX AND canX THEN
levelX.

The inference engine defuzzifies the autonomy of agents by using
the measurements from the autonomy fuzzifier and the results of the
autonomy rule base. The autonomy is then dynamically distributed
among the three main behaviors of agents as follows:

=
⎧

⎨
⎪

⎩⎪

∂ ⇐ +
∂ ⇐ ∧ +

∂ ⇐ +
∂ k

know
know can

can
μ ( ; α, β,γ)

α γ,
α β γ,

β γ,

k k k

k k k k

k k k

1 1

2 2

3 3

ϼ

ϼ

ϼ (5)

where α, β, and γ denote the parameters that can be adjusted by using
the autonomy regulator.

The agents deliberate on the possible autonomy levels and then
choose a suitable level as follows:

=
⎧
⎨
⎩

>
∂

k iμ ( ; ) true, 0

false, otherwise
,c l

k
i

(6)

where μc denotes the operational behavior of agents, kϼ . The autonomy

level choice function returns true if and only if >
∂

0l
k
i

. Otherwise, the
autonomy level choice function returns false and the agent is pushed
into choosing between considering other autonomy levels or properties
in order to proceed or exposing its current run cycle to an adjustable
autonomy operation (e.g., block behavior).

Assume that a multi-agent system has three autonomy levels and
manages the adjustable autonomy of three agents. Table 2 shows the
proposed settings of the FLAA model for this system. The following
examples explain how the autonomy in this system is distributed and
adjusted based on the FLAA model.

Example 1: In this scenario, the three agents demonstrate fully and
semi-autonomous properties in three phases as shown in Fig. 4.1 In the
first phase, two agents, ˙ 1,2

1ϼ , autonomously choose ṫ1, while the other
agent, ˙ 3

1ϼ , autonomously chooses ṫ2. The measured autonomy degrees in
this phase are ∂ = 0.661

1 , ∂ = 0.662
1 , and ∂ = 0.33

1 . Subsequently, the two

agents, ˙ 1,2
1ϼ , can move the third agent,

∼
3
1ϼ , into choosing t͠1 because

∼
3
1ϼ

has semi-autonomous properties. In the second phase, two agents, ˙ 1,3
2ϼ ,

autonomously choose ∈ȧ1 l1, while the other agent, ˙ 2
2ϼ , autonomously

chooses ȧ2 ∈ l2. The measured autonomy degrees in this phase are
∂ = 0.571

2 , ∂ = 0.602
2 , and ∂ = 0.623

2 . The differences among these au-
tonomy degrees can be ascribed to the differences between the
knowledge and authority history and the results of Eq. (5). Although ˙ 2

2ϼ
has a sufficient degree of autonomy to perform in < ∂ ≤l (0.3 0.7)2 2

2 , ˙ 1,3
2ϼ

can push
∼

2
2ϼ into choosing ∼a1 because 2

2ϼ has semi-autonomous prop-
erties. In the third phase, the agents autonomously execute ȧ1 because
they all have a sufficient degree of autonomy to perform this action on
l1.

Example 2: In this scenario, the agents are either experiencing an
intervention or have blocked behaviors as shown in Fig. 5. In the first
phase, three agents, ˙ 1,2,3

1ϼ , autonomously choose ṫ1. Given that the au-
tonomy degree in this phase is ∂ = 11,2,3

1 , these three agents all proceed
with their run cycles. In the second phase, two agents, ˙ 1,3

2ϼ , autono-
mously choose ȧ2, while the other agent, 2

2ϼ , autonomously chooses ȧ1.
The autonomy degrees of these agents in the second phase are ∂ = 0.781

2 ,
∂ = 0.822

2 , and ∂ = 0.922
2 . In this case, 1,3

2ϼ proceeds with its run cycle,
while 2

2ϼ is blocked because its autonomy level does not indicate that

Fig. 3. The FLAA model.

Table 2
Sample settings of the FLAA model.

level boundary property task actions

l1 ≤ ≤l0 0.31 → ∨l p t a: ˙ ˙1 1
1 ∈ ∧ ∧t l l l1 1 2 3 a1 ∈ l1

l2 < ≤l0.3 0.72 → ∨l p t a: ˙ ˙2 1
2 ∈ ∧t l l2 2 3 a2 ∈ l2

→ ∨l p t a: ͠ ͠2 2
2

l3 < ≤l0.7 13 → ∨l p t a: ˙ ˙3 1
3 t3 ∈ l3 a3 ∈ l3

→ ∨l p t a: ͠ ͠3 2
3

→ ∨l p t a:3 3
3

1 ẋ , x͠ , and x for each ϼ, t, and a denote fully, semi-, and non-autonomous properties,
respectively.
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this agent has semi-autonomous properties and considers other options.
Eventually, in the third phase, two agents, 1,3

3ϼ , autonomously execute
ȧ2.

Those agents with non-autonomous properties follow the same
mechanism of semi-autonomous agents, that is, they only follow the
commands of other agents. They also can seek the inputs or commands
of human users.

3.4. Autonomy adjustment

Autonomy adjustment is essentially a process of redistributing au-
tonomy among several agents with an aim to direct their operational
behaviors toward producing some desired results [8]. This process is
meant for improving agents’ performance, and helping them overcome
complex and uncertain situations, or avoiding errors or failures [24]. As
explained in the previous section, the FLAA model dynamically adjusts
the autonomy of the agents and allows human users to manually adjust
such autonomy by using the parameters: α (for adjusting the required
autonomy knowledge), β (for adjusting the required autonomy au-
thority), and γ (for adjusting the global autonomy). As shown in Eq. (5),
the value of γ indicates the extent of change in the overall autonomy of
the agents. The values of the aforementioned parameters are sent as a
crisp set to the autonomy regulator (as shown in Fig. 3). Assigning
positive and negative values to these parameters will increase and de-
crease the autonomy of agents, respectively. In sum, the adjustable
autonomy process can result in any of the following modes:

• Default adjustable autonomy: The autonomy of the agents is left
unadjusted, and the autonomy adjustment parameters are set to
α=1, β=1, and γ=0.

• Fully autonomous: The system works beyond the established know
and can conditions, and all three parameters are assigned with high
values.

• Non-autonomous: All three parameters are assigned with low va-
lues, thereby blocking the autonomous behaviors of all agents.

• Imbalanced adjustable autonomy: The autonomous behaviors of
agents are greatly diminished and the system operations are inter-
rupted after the value of one parameter, either α or β, increases
massively while that of the other parameter decreases massively.

4. The AEMM-Care system

The proposed FLAA model is implemented and tested in the AEMM-
Care system, which detects and prevents fall incidents among the el-
derly by tracking their daily activities [25]. The system architecture,
the testing scenario settings, and the falling situations that are in-
vestigated in the test are all adapted from [1,3] and [6]. The AEMM-

Care system is situated in an environment filled with uncertainty, which
can be attributed to several factors. First, both the sensory data and the
data filtering process are fully exposed to noise during the data col-
lection and preparation phases [1,3,25]. Second, as shown in Fig. 6,
some human movement patterns are very similar, which may result in
confusion when interpreting the recorded positioning coordinates [26].
The combination of these two factors only adds to the ambiguity of the
collected data. The AEMM-Care system also operates in a complex en-
vironment, and such complexity can be ascribed to the inherent chal-
lenges in accurately detecting and interpreting the movement activities
of the elderly [4,6,16,17]. The system faces an even higher degree of
complexity when identifying fall situations based on the patterns of
certain activities.

4.1. Data description

We use the test dataset in [25] for our investigation. This dataset is
acquired by the Ubisense system [26] and contains real localization
data of daily movement activities for five persons. As shown in Fig. 7, a
user wears tags that are attached to his/her right and left ankles, chest,
and waist, and each movement data collected by these tags is fed into
the Ubisense system. The employed dataset is non-linear and contains
164,860 movement instances with 8 attributes. These attributes denote
tag identification data, positioning data, and acceleration data. They
are used to describe 11 human movement activities as shown in Fig. 6.

4.2. Prototype design

The AEMM-Care system comprises four main operational units. The
data filter unit gathers and filters the sensory data. The data format unit
organizes the data, d, into a set of movement attributes. The control
unit identifies the movement activities of the elderly and then uses the
patterns of these activities to decide on the most suitable alarm. The
alarm unit notifies human users, including the elderly, relatives, and/or
emergency response systems (ERS) personnel, after a fall incident is
recorded. The notified users respond accordingly and evaluate the
success of the alarm. Fig. 7 presents the AEMM-Care system archi-
tecture, its four operational units, and the response of the notified
human users.

The control unit, which includes the FLAA model with three au-
tonomy levels and three agents, dynamically allocates autonomy to
these agents based on their performance. Each of these agents is
equipped with an ordinary random forest machine learning algorithm
and bagging algorithm for tree learning [3,6]. Given that each of these
algorithms adopts different cross-validation folds, to ensure that each
agent has a different level of learning capability. Previous studies have
employed the same algorithm to accurately detect the movement

Fig. 4. The first example.

Fig. 5. The second example.
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activities of humans. Specifically, the random forest machine learning
algorithm has achieved movement detection accuracies of 70.37% in
[6], 77.5% in [3], and 79.2% in [1]. The agents perform their tasks in
the following operational phases:

• k
1ϼ : The agent inputs the measurable attributes of the transmitted

sensory data, d, into the random forest algorithm to predict the

movement activities of the elderly, →… …d m:k
1

1,2, 1,2,ϼ . Afterward,
the agent maps the pattern of these activities and then selects the
most appropriate task that can be performed in response to a fall
situation, → ⇒…m: ( s) tk

1
1,2,ϼ ;

• k
2ϼ : The agent selects the most appropriate alarm actions based on

the FLAA model and the task selected in the previous phase,
→ …a: tk

2
1,2,ϼ ; and

Fig. 6. The 11 elderly activities.

Fig. 7. The architecture of the AEMM-Care system.

Table 3
The operational setting of the AEMM-Care system.

situations tasks actions

→ ¬ ∧ ∨ ∨ ∨s x m m m m m: ( )1 2 1 4 5 6 t1 →s a1 1

→ ¬ ∧ ∧ ∨ ∧ ∨ ∨ ∧s x m m m m m m m m: (( ) ( ) ( ))2 2 7 4 10 5 6 11 9 →s a2 2

→ ¬ ∧ ∧ ∨ ∧ ∧ ∨s x m m m m m m m: (( ) ( ( )))3 2 1 3 1 5 8 9 → ∧s a a3 2 3
→ ¬s x m:1 2 t2 →s a1 1
→ → ¬s x m m:2 2 4 → ∧s a a2 2 3
→ → →s x m m m:3 2 4 4 → ∧ ∧s a a a3 2 3 4

Table 4
The operational autonomy setting of the AEMM-Care system.

level boundary property task actions

l1 ≤ ≤l0 0.31 → ∨l p t a: ˙ ˙1 1
1 ∈ ∧t l l1 1 2 a1 ∈ l1

a2 ∈ l2
a3 ∈ l2

l2 < ≤l0.3 0.72 → ∨l p t a: ˙ ˙2 1
2 ∈ ∧ ∧t l l l2 1 2 3 a1 ∈ l1

→ ∨l p t a: ͠ ͠2 2
2 a2 ∈ l2

l3 < ≤l0.7 13 → ∨l p t a: ˙ ˙3 1
3 a3 ∈ l2

→ ∨l p t a: ͠ ͠3 2
3 a4 ∈ l3

→ ∨l p t a:3 3
3
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• k
3ϼ : The agent executes the selected alarm action, →…a: E’k

3
1,2,ϼ .

Falling tasks, situations, and actions are included in the setting of
the AEMM-Care system. These actions alert human users about the fall
situations detected or predicted by the agents, to which these humans
respond according to the types of alarm actions (positive triggered
alarm, +r1 , negative triggered alarm, −r2 , and negative not triggered
alarm, −r3 ). The performance of the agents is then evaluated based on
their responses to the detected or predicted fall situations. Table 3
presents the setting of the AEMM-Care system, which includes two tasks
(where t1 and t2 denotes fall prevention and detection, respectively), six
situations (where a situation, s, denotes a specific pattern of activities),
and four alarm actions (where a1, a2, a3, and a4 denote no alarm, alarm
elderly, alarm relative, and alarm ERS, respectively).

The falling tasks and alarm actions are distributed among the au-
tonomy levels l1, l2, and l3 based on the fall situations and alarm ac-
tions. Table 4 shows the relationship between the falling tasks and
alarm actions with the autonomy levels in the AEMM-Care system.

The compositions in Tables 3 and 4 set the FLAA model of the
AEMM-Care system but there are some other alternative settings that
can be applied. The distribution of tasks and actions to each autonomy
level indicates the possibility and risk of wrongly interpreting or pre-
dicting a fall and triggering the alarms. The agents select t1 or t2 based
on their interpretation of the sensor readings of elderly activities, and
the pattern of these activities. Given that t1 represents deducible task
because it has more complicated patterns, lower chances to accurately
predict a falling situation but lower risk of wrongly interpreting the
possibility of falling compared with t2, and hence, t2 represents critical

task which imposes different autonomy options on the triggering of
alarms. Consequently, a1 represents primitive action as it has no con-
sequence of wrong alarm, a2 and a3 represent deducible actions as they
have consequence of wrong alarms and a4 represents critical action as it
has a greater consequence of wrong alarm. Algorithm 2 presents the
application of the FLAA model in the AEMM-Care system.

Fig. 8. The AEMM-Care system.
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4.3. Prototype implementation and testing

The AEMM-Care system adopts the Ubisense architecture which
contains the hardware of ultrasonic sensors, tags, network switch and a
computer system and the software of the system application. Fig. 8
presents an overview of the AEMM-Care system. We implement the
AEMM-Care system modules in Java and the FLAA model as well as the
agents in Java Agent Development framework (Jade). Jade has at-
tracted wide usage in the development of agent-based applications
[27]. The FLAA Model aims to reduce the spurious transition effects of
the AEMM-Care system. This model stimulates accurate collaborative
results even if an agent misinterprets an activity or pattern of a set of
activities. It dynamically shifts the agents’ autonomy toward a direction
that can improve their fall detection and prevention accuracy.

The AEMM-Care system test involves performing two test series,
where a test series consists of three independent runs. In the first test
series (i), the system operates in full-autonomy and beyond the FLAA
conditions. In the second test series (ii), the system operates in default
adjustable autonomy and according to the FLAA conditions (as ex-
plained in Section 3.4). The test scenario includes six situations of
movement activities with different complexity levels, and an alarm
must be raised in four of these situations (as shown in Table 2). This test
setup has three objectives. First, to ensure that the agents monitor the
movement activities of the elderly, interpret the patterns of these ac-
tivities, respond to falling incidents, successfully complete their fall
detection and prevention tasks, and perform the necessary alarm ac-
tions. Second, to ensure that the FLAA model sets appropriate limits of
the autonomy levels and dynamically distribute autonomy to the agents
based on their performance. Third, to obtain comprehensive results that
validate the importance of the research contributions.

5. Results and discussion

The AEMM-Care system achieves irregular success rates in the fully
autonomous mode (i), and such irregularity can be ascribed to the
variances in the random forest agent’s learning of different cross-vali-
dation folds. t1 and its actions have much lower success rates than t2
and its actions because predicting those movement activity patterns
that lead to fall situations is a complex process. The success rates of
both t1 and t2 also do not change after multiple runs. The success rate of
t1 reaches its peak value of 53.91% in run2 and lowest value of 47.59%
in run1, while the success rate of t2 reaches its peak value of 73.60% in
run3 and lowest value of 70.32% in run2. Table 4 shows the results of
the AEMM-Care system after three runs in the fully autonomous mode.

Similarly, in the default adjustable autonomy mode (ii), the AEMM-
Care system shows irregular success rates, and t1 and its actions have
lower success rates than t2 and its actions. The FLAA model also fails to
address the high complexity in predicting the movement activity pat-
terns of the elderly. However, both t1 and t2 show obvious improve-
ments in their success rates after multiple runs. Specifically, the success
rate of t1 reaches its peak value of 73.63% in run3 and lowest value of
57.86% in run2, while that of t2 reaches its peak value of 82.56% in
run1 and lowest value of 77.28% in run3. Table 5 shows the results of
the AEMM-Care system test after three runs in the default adjustable
autonomy mode (Table 6).

The success rates of t1 in the adjustable autonomy mode are ob-
viously greater than those in the fully autonomous mode (49.88% in
run1 and 64.07% in run2). The FLAA model also remarkably increases

+r1 , decreases −r2 , and slightly decreases −r3 . Fig. 9 shows the changes in
the +r1 , −r2 , and

−r3 responses of t1 in the fully autonomous (i) and ad-
justable autonomy (ii) modes.

The success rates of t2 in the default adjustable autonomy mode are
slightly higher than those in the fully autonomous mode (71.81% in
run1 and 79.11% in run2). The FLAA model remarkably increases +r1 ,
decreases −r2 , and slightly increases −r3 . Fig. 10 shows the changes in the

+r1 , −r2 , and
−r3 responses of t2 in these two autonomy modes.

The variations in Figs. 9 and 10 indicate that the performance of
agents and the accuracy of the results that the default adjustable au-
tonomy mode outperforms the fully autonomous mode. The improve-
ment in the results of the default adjustable autonomy mode can be
explained by the effect of the FLAA model on the agents’ selection of fall
prevention and detection tasks and on their corresponding actions. Such
effect is reflected in the changes in the negative triggered alarm, −r2 , and
the negative not triggered alarm, −r3 , in both the default adjustable
autonomy and fully autonomous modes. Specifically, −r2 decreases while

−r3 increases in the default adjustable mode. The reduced −r2 shows that
the FLAA model decreases the instances of triggering false or undesir-
able alarms, while the increased −r3 shows that the model blocks the
agents’ behaviors that can trigger desirable alarms. Such behavior can
be attributed to the mismatch between the autonomy levels of the

Table 5
The AECMM-Care system test results in the fully autonomous mode (i).

test1 task action response success (%)

type number type number +r1
−r2

−r3 action task

run1 t1 1132 a1 735 497 162 76 67.62 47.59
a2 467 212 192 63 45.40
a3 269 80 123 66 29.74

t2 611 a1 527 458 48 21 86.91 71.52
a2 122 84 25 13 68.85
a3 122 84 25 13 68.85
a4 83 51 22 10 61.45

run2 t1 1227 a1 796 562 139 95 70.60 53.91
a2 506 272 185 49 53.75
a3 289 108 122 59 37.37

t2 517 a1 440 383 41 16 87.05 70.32
a2 102 68 27 7 66.67
a3 102 68 27 7 66.67
a4 69 42 21 6 60.87

run3 t1 1189 a1 771 526 177 68 68.22 48.13
a2 490 196 213 81 40.00
a3 282 102 105 75 36.17

t2 551 a1 445 395 35 15 88.76 73.60
a2 103 75 20 8 72.82
a3 103 75 20 8 72.82
a4 70 42 17 11 60.00

Table 6
The AEMM-Care system test results in the default adjustable autonomy mode (ii).

test2 task action response success (%)

type number type number +r1
−r2

−r3 action task

run1 t1 1018 a1 614 480 82 52 78.18 60.72
a2 405 228 110 67 56.30
a3 197 94 61 42 47.72

t2 671 a1 524 475 27 22 90.65 82.56
a2 118 93 16 9 78.81
a3 118 93 16 9 78.81
a4 61 50 5 6 81.97

run2 t1 1073 a1 598 432 98 68 72.24 57.86
a2 409 237 115 57 57.95
a3 159 69 54 36 43.40

t2 620 a1 574 491 49 34 85.54 77.50
a2 130 96 19 15 73.85
a3 130 96 19 15 73.85
a4 56 43 6 7 76.79

run3 t1 987 a1 655 590 42 23 90.08 73.63
a2 419 311 71 37 74.22
a3 228 163 35 30 71.49

t2 609 a1 544 504 22 18 92.65 77.28
a2 129 91 23 15 70.54
a3 129 91 23 15 70.54
a4 65 49 9 7 75.38
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agents and the autonomy degrees of their tasks or actions.
Fig. 11 shows the autonomous behavior of agents in the default

adjustable autonomy mode when performing fall prevention and de-
tection tasks and when executing alarm actions. It also presents the
average autonomy degrees recorded in each run phase and operational
autonomy levels. The agents’ performance in t1 and t2 and their cor-
responding alarm actions in the three runs of t2 result in slightly im-
balanced adjustable autonomy levels because these agents have reached
a high agreement (knowledge) on their task and action selection yet
their alarm actions (authority) have achieved low success rates. Some
variations can also be seen in the selection agreement/disagreement
and alarm success/failure of these agents in specific phases of their run
cycles. On the one hand, these agents have reached a high and low
agreement in the tasks-selection phase, 1,2,3

1ϼ , of t2 and t1, respectively.
The FLAA model also blocks the attempts of unqualified agents because
of their unsatisfactory know condition (i.e., low agreement), which in-
dicates that these agents have insufficient knowledge about the elderly
movement activities that they are supposed to monitor. Therefore, the
sensory data on elderly activities are highly uncertain and need to be
revised. On the other hand, a high and low alarm success rate is
achieved in the actions-execution phase, 1,2,3

3ϼ , of t2 and t1, respectively.
The FLAA also blocks the attempts of those agents with an un-
satisfactory can condition (i.e., low success rate), which suggests that
these agents still make the wrong decisions even if they have sufficient
knowledge and high agreement on the elderly activities that they are
supposed to monitor. These poor decisions can be ascribed to the very
complex nature of detecting and interpreting the movement activity

patterns of the elderly. Therefore, the operational behaviors of agents in
their decision-making cycle need to be modified.

In sum, the FLAA model provides an autonomy management me-
chanism that overlaps the current performance of a system with the
aggregation of its past performance, and such overlap, in turn, can di-
rect the agents’ autonomy toward achieving a competent performance.
This model is able to reduce the spurious transition effects of the
AEMM-Care system and guaranteeing competent results even when an
agent misinterprets an activity or a pattern of a set of activities. It
successfully improves the fall detection and prevention accuracy of
agents and consequently increases the satisfaction of users with the
AECMM-Care system. The performance improvements can be attributed
to the flexibility granted by the model that enables all agents to operate
at different autonomy levels and obtain various autonomy properties.
Apart from adjusting the autonomy of agents based on their perfor-
mance, the FLAA model allows human users to manually adjust the
autonomy of these agents according to their preferences. The FLAA
model is proven to be useful for multi-agent systems that are operating
in complex environments where some agents tend to make wrong de-
cisions and execute wrong actions.

This study offers several contributions to research and practice.
First, it proposes the FLAA model, which uses fuzzy logic to formulate
the adjustable autonomy of a multi-agent system, and then test this
model in AEMM-Care system, a remote elderly movement monitoring
system. Second, it proposes random forest agents with three adjustable
autonomous run phases. Third, it highlights the importance of re-
cognizing specific activity patterns of an elderly to improve the

Fig. 9. The variation in the humans’ responses to the alarm actions of the AEMM-Care system.

Fig. 10. The variation in the humans’ responses to the alarm actions of the AEMM-Care system.
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accuracy of preventing and identifying the elderly falling situations.
Unlike other works that only focus on classifying independent move-
ment activities (i.e., sitting or walking), this work classifies the pattern
of dependent movement activities (i.e., the fall situations depicted in
Table 3). In this way, this study accounts for both the complexity of
classifying movement activity patterns and the related error margin
that results from dependent classification. However, as a limitation of
this study, it does not investigate the behavior of multi-agent systems in
the long term or examine the effect of the agents’ learning on their fall
detection and prevention accuracies. Moreover, the test data do not
reflect the patterns of some real-world movement activities or fall si-
tuations.

6. Conclusion and future work

We perform this research with an aim to develop a model for
managing the adjustable autonomy of multi-agent systems that are
operating in complex environments. The FLAA model quantifies the
autonomy of agents based on knowledge and authority criteria, sets
proper autonomy levels for these agents, and manages adjustable au-
tonomy of the agents based on their performance. The autonomy
management helps the agents to make highly flexible and efficient
decisions and guides them toward achieving reliable actions. The au-
tonomy adjustment is effective on the tasks deliberation, actions se-
lection and actions execution behaviors of the agents. It is dynamically
performed by the model and can be imposed by human users within the
agents run cycles.

We test the FLAA model in the AEMM-Care system to detect and
prevent elderly fall situations. The test results show that the system
achieves an impressive 79.11% success rate in detecting falls and a
moderate 64.07% success rate in preventing falls. This finding can be
ascribed to the complex nature of predicting those activity patterns that
can result in a fall. These results all point toward how managing the
autonomy of a system can boost the agents’ performance, the efficiency
of their decisions, and the reliability of their actions. The knowledge
autonomy conditions ensure the continuity of the agents’ cycle, while
the autonomy authority conditions may block some alarms due to faulty
actions resulting from the poor decisions of agents.

We test the FLAA model based on the knowledge and authority
attributes. The fuzzy logic technique greatly expedites the adoption,
evaluation, and comparison of these attributes with other autonomy
attributes, including confidence, consistency, trust, and motivation.
Using these other attributes may further improve the accuracy of fall
detection and prevention systems and consequently, increase the sa-
tisfaction of the system users. Additionally, the influence of different
autonomy settings and manual autonomy adjustment on the behavior
and performance of agents presents an interesting subject that we shall
explore in our future work.

Authors contributions

The contributions of this work are represented by the following
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forest agents with three adjustable autonomous run phases.

• The third contribution of this work lies in the recognition of specific
patterns of activities to identify and prevent elderly falling situa-
tions. The related work classifies the pattern of independent elderly
movement activities, such as walking, sitting, or lying, while our
work also classifies the pattern of dependent movement activities,
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complexity of the classification process and its related error margin
that results from dependent classification are both accounted for in
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Summary points

• We conduct this research with the aim to establish an ad-
justable autonomy model for multi-agent systems that fa-
cilitates efficiency and flexibility to the agents’ decisions and
reliability to their actions.

• We propose a Fuzzy Logic-based Adjustable Autonomy (FLAA)
model to manage the autonomy of multi-agent systems that
perform in complex environments.

Fig. 11. The average autonomy degrees of the agents.
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• We apply the FLAA model in an Automated Elderly
Movements Monitoring system (AEMM-Care). The AEMM-
Care system monitors elderlies’ daily activities, carries out
fall prevention and fall detection tasks and performs fall
alarm actions.

• The AEMM-Care system results of the fall prevention show an
intermediate success rate of 64.07%. This is due to the
complexity of predicting the pattern of the activities that
might lead to the falling situation. The results of the fall
detection task are encouraging in which the system is able to
achieve 79.11% success rate.
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