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A B S T R A C T

Compressed sensing theory has been applied in the signal processing stage of many existing imaging systems. This
research attempts to incorporate compressed sensing principles in conjunction with the collimator design. Monte
Carlo N-Particle Transport Code (MCNP) was used to design a proof-of-concept experimental apparatus. This was
accomplished by running simulations to determine: the height of water required to stop thermal neutrons from
a 252Cf source; collimator array dimensions; the collimator material; and the collimator size for the experiment.
The simulations were run using a cylindrical water tank and a 2 × 2 array of channels acting as collimator. Three
different materials were simulated to determine the best collimator composition for the experiment. An array
configuration was defined as a random combination of air-filled and water-filled channels. Neutron counts were
tallied using MCNP for each configuration with a total of 300 configurations for a 23 × 23 array and 100 for
an 11 × 11 array. The image of the source corresponding to the different collimator array size was constructed
using non-negative least squares with MATLAB. Another MCNP model with a rectangular tank was created with
an 11 × 11 collimator array. Several images as a function of the number of measurements, K, were produced
to observe the minimum K that would result in accurate image quality. These simulations have resulted in the
decision to proceed with the assembly of an imaging system made of a water-filled 250-gallon tank with an array
of 0.5-inch 11 × 11 polyvinyl chloride (PVC) pipes. The K required for a conventional raster scan method would
be the total pixels, which is 𝐾 = 121 in the 11 × 11 case. It was found that the source shape and location can be
obtained with K that is 50% of the total pixels.
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1. Introduction

Traditionally, an image with 𝑀 pixels requires 𝑀 measurements to
reproduce it and this method is known as the raster scan method [1].
Compressed (or compressive) sensing theory however allows for smaller
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number of measurements, 𝐾, to recover information that was thought to
be unrecoverable if 𝐾 < 𝑀 [2]. This information acquisition method has
been utilized in signal processing and data storage applications, but very
few studies have been performed in nuclear imaging applications [3–5].
A neutron imaging technique was proposed to include the principles of
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compressed sensing in the collimator design [6]. It is emphasized that
the objective of this research is to image a neutron source to determine
its shape and size as this is useful for nuclear security applications.

This novel technique would be helpful in the efforts to monitor
contraband nuclear materials transportation at shipping ports or land
borders. Neutron source imaging may be better than just neutron
detection as it would help in determining the level of response that is
needed if the shape of the suspected neutron source could be visualized.
One advantage of this design is that it allows for the use of only one
or two neutron detectors to image a source with fast neutrons. The
materials used for this proposed system design are also inexpensive and
ubiquitous, making it inexpensive to acquire and implement. A system
utilizing this technique could also be employed at nuclear installations
to compare neutron image signatures for nuclear safeguards purpose.

The fundamental principle that allows for this technique to work is
the fact that mathematically, signals obtained by measurements using
compressed sensing can be translated into another set of signals that col-
lectively form the image signals, 𝑥. Compressive sensing works because
𝑥 is required to be 𝑠-sparse, which means that 𝑥 can be represented using
only 𝑠 non-zero coefficients. As 𝑥 is plotted as an image, lighter shades in
𝑥 would represent the possible positions with stronger neutron intensity.
Therefore, if a neutron source is present when the imaging takes place,
𝑥 would be an 𝑠-sparse set of signals as it is expected that the neutron
source is the dominant neutron emitter that would stand out from the
surrounding.

The translation process utilizes incoherence of a sensing matrix, 𝐴,
which maps 𝑥 to the measured signals, 𝑏, the neutron counts. In linear
algebra, coherence of a matrix is defined as the largest absolute normal-
ized inner product between its different columns and this characterizes
the dependence between the matrix columns. A small value of coherence
(higher incoherence) would result in a better likelihood for successful
signal recovery. To ensure incoherence, the sensing matrix is required
to have randomness as a property. It is shown later in the methodology
section that 𝐴 is assigned to be a random combination of zeros and ones.
Solving for 𝑥 would eventually produce a 2𝐷 resemblance that identifies
the shape and location of the imaged neutron source.

The image signals, 𝑥, are recovered using non-negative least squares
(NNLS), in which a requirement for the sparse 𝑥 entries to be non-
negative is imposed [7,8]. Nonnegative entries are required because it is
assumed that the image signals would consist of only positive values as
they would indicate the presence of a neutron source. Other materials
surrounding the source are not radioactive, and therefore will not
generate positive values. Using the relation 𝐴𝑥 = 𝑏, 𝑥 matrix recovery
is achieved by using a built-in MATLAB function called lsqnonneg and
is explained further in the methodology section. Monte Carlo N-Particle
Transport Code (MCNP) [9] simulations were performed to determine
the collimator array size (total pixels), dimensions and material for the
experiment. Throughout this paper, the chronology of simulations that
led to the final system design is elaborated and results are subsequently
discussed.

2. Methodology

2.1. MCNP simulations

The preliminary simulations were based on a cylindrical water tank
to determine the required water height to stop all thermal neutrons
through scattering and absorption in water. A 252Cf isotropic point
source was placed 50 cm above the water and a measurement surface
for the 𝐹1 tally was placed directly underneath the tank. The 𝐹1 tally
defined in MCNP measures particle current (neutron in this case) at
an assigned surface. This means that neutron counts will be tallied
whenever a neutron, regardless of its energy, crosses the surface of
interest. Only direct streaming of neutrons from the source will be used
for image reconstruction. Simulations with varying 𝐹1 tally surface size

Table 1
The dimensions of MCNP simulation models.

Item Dimensions (cm)

Cylindrical tank 31.48(𝑅) × 101(𝐻)
Parallelepiped tank 101.6(𝑊 ) × 121.92(𝐿) × 137.16(𝐻)
23 × 23 pipe 0.316(𝐼𝐷) × 0.514(𝑂𝐷) × 100(𝐻)
11 × 11 pipe 0.635(𝐼𝐷) × 0.912(𝑂𝐷) × 100(𝐻)

were run to determine collimator dimensions that ensured minimal in-
scatter from exterior neutrons.

The collimator was introduced vertically into the model at the tank’s
center as a 2 × 2 array. Simulations were run with three different types
of collimator materials; stainless steel, polyvinyl chloride (PVC) and
aluminum. Once the appropriate material was identified, an array size
of 23 × 23 was arbitrarily chosen. A ring source was positioned at 50 cm
above the water surface and was defined as a 1 μCi 252Cf fission source
emitting 4.31 × 103 ns−1. A ring source was chosen so that the image
quality could be evaluated by the easiness of source shape and position
identification. After the image produced using 23 × 23 array size was
evaluated, the array size was reduced by half to see if there was any
difference in the image quality. An acceptable image quality difference
would mean that smaller array size may be employed as it would result
in a more practical experiment. Another model with an 11 × 11 array
size, but with a rectangular tank was simulated due to the availability of
a rectangular tank for the experiment. The rectangular tank model used
a 100 μCi of the same neutron source as one of the variance reduction
methods in ensuring accurate MCNP results.

A configuration is defined as a combination of air-filled (empty)
pipes and water-filled pipes. Empty pipes are represented as 1’s in the
𝐴 matrix while water-filled pipes are represented as 0’s. This allows
for neutron interactions to be defined as follows; the inner product of
the 𝐴 matrix with the image matrix, 𝑥, would then represent neutron
absorption for multiplication with 0’s and neutron streaming towards
the 𝐹1 tally surface at the end of the tank (where the detector will
be in the experiment) for multiplication with 1’s. The average open
channel fraction of the collimator is 0.5. Three hundred random array
configurations were created by a Python code for the 23 × 23 array and
100 configurations for the 11 × 11 array. This resulted in the creation
of 300 and 100 MCNP input files for the 23 × 23 and 11 × 11 array,
respectively. Each file was run, producing a corresponding output file
that contains the 𝐹1 tally results. These results form a 𝑏 matrix that
corresponds to the respective array size.

Table 1 shows the dimensions used in the MCNP models. The
proposed neutron source imaging system is illustrated in Fig. 1. This
diagram shows the cross sectional area of the proposed setup on the
𝑥–𝑧 plane and the 𝑥–𝑦 plane at 𝑧 = 50, which is about halfway through
the height of the tank. The collimator array is placed in the middle of
the tank with rubber stoppers fixed at the bottom ends. Fig. 1 shows
the configuration with all pipes filled with water (matrix 𝐴 entries are
all zeros). For proposed experiments, two 3He neutron detectors are
placed beneath the tank and a neutron source is placed on or above
the collimator. Depending on the row entries of matrix 𝐴, different
configurations of collimator can be obtained by removing water (if the
entry is 1) or adding water (if the entry is 0) into corresponding pipes.

2.2. Image reconstruction

A Python code was created to extract the array configurations from
the MCNP input files and to rewrite in an Excel spread sheet where each
array configuration is stored as the row entry of the spreadsheet. The
extracted data forms matrix 𝐴, which is therefore a 300 × 529 matrix
for the 23 × 23 array and 100 × 121 for the 11 × 11 array. The 𝐹1
tally results were also extracted from the corresponding output files and
rewritten as the row entry in another spreadsheet. These entries in a new

2



N. Anuar, C. Marianno and R.G. McClarren Nuclear Inst. and Methods in Physics Research, A 954 (2020) 161446

Fig. 1. Illustration of the proposed neutron source imaging system displayed using the MCNP Visual Editor software showing the cross-sectional views on the 𝑥–𝑧 plane at 𝑦 = 0, and
the 𝑥–𝑦 plane at 𝑧 = 50.

Excel sheet makes matrix 𝑏. Here, 𝑏 is a 300 × 1 matrix for the 23 × 23
array and 100 × 1 for the 11 × 11 array.

min ∣∣ 𝑥 ∣∣1 subject to 𝐴𝑥 = 𝑏 (1)

Image reconstruction in compressed sensing is usually solved using
l1-minimization. There are a few variations of l1-minimization tech-
nique, depending on the type of problem to be solved. The earliest
code was developed using MATLAB program and is known as the l1-
MAGIC program [2]. An example of one way to solve for 𝑥 = 𝑏∕𝐴 by
l1-minimization is shown by Eq. (1), which is known as basis pursuit.

If a nonnegative vector, 𝑥, is recovered by l1-minimization, then it
is the unique nonnegative vector that satisfies 𝐴𝑥 = 𝑏. Therefore, 𝑥 can
also be recovered by NNLS by solving for 𝑥 = 𝑏∕𝐴 and minimizing the 𝑙2
of the difference between 𝑏 and the inner product of 𝐴 and 𝑥 as shown
in Eq. (2). If the image, 𝑥, is nonnegative and sparse, the use of NNLS
will typically solve for 𝑥 if the NNLS uses the active Lawson–Hanson
algorithm.

min ∣∣ 𝑏 − 𝐴𝑥 ∣∣2 subject to 𝑧 ≥ 0 (2)

Solving for Eq. (2) using an active set is possible by solving an un-
constrained least-square problem that includes only inactive variables, if
the active variables are known [10]. This is done by attempting to find
the nonnegative solution with some variables being assigned to zero.
These variables are called an active set because of their non-negativity
constraints being activated. The active set is modified by a single
variable in each iteration and finally the unconstrained least-square
problem is solved without the active set [11]. The lsqnonneg function
in MATLAB executes the Lawson–Hanson algorithm that employs this
active-set technique [8]. A comparison between the l1-minimization
solution and the NNLS solution is presented and discussed in the
subsequent section for the 23 × 23 array with the ring source positioned
near the top-right corner of the collimator array with 𝐾 = 300.

The recovered signal matrix, 𝑥, is shown as a gray-scaled image using
the imagesc command in MATLAB. For the 11 × 11 rectangular data,
images were constructed with various numbers of measurements, 𝐾,
starting from 100 and reduced to 30 with an interval of 10 measurements.
The purpose of this was to observe the effect of𝐾 value on image quality.

3. Results and discussions

The initial simulations resulted in the requirement for a 100 cm
height of water to stop all thermal neutrons (less than 0.025 eV) at the

bottom of the cylindrical water tank. This was reflected by the zero value
of MCNP tally output for thermal neutrons. The array was required to
be smaller than 25.3 cm by 25.3 cm to avoid in-scattering from the sides
of the tank into the 𝐹1 tally surface.

Placing a different material in the tank might cause some neutrons to
reach the 𝐹1 tally surface because of its lower neutron absorption cross
section compared to that of water. Since most of the thermal neutrons
are supposed to be absorbed by the determined water height, a material
that would result in minimal number of neutrons to reach the 𝐹1 tally
surface would be preferable. Stainless steel was found to be the best
collimator material as it caused minimal neutrons traveling through
the length of the collimator compared to PVC and aluminum. However,
there was only a 0.17 ± 0.09 ns−1 average count rate increase when PVC
was used as the collimator material. Since PVC pipes are less expensive
than the stainless steel pipes, PVC was selected as the collimator material
for the proof-of-concept experiment.

With these requirements, the neutron source image was recon-
structed successfully by the 23 × 23 array size using all measurements
(𝐾 = 300). The reduced array size to 11 × 11 resulted in a source image
with lower resolution as expected using all measurements (𝐾 = 100), but
with an image quality that still allows for source localization and shape
identification. The reconstructed image, 𝑥 using l1-MAGIC is compared
with using lsqnonneg function in MATLAB in Fig. 2. It can be seen here
that the NNLS technique gives the same solution as the l1-minimization
technique. Due to this similarity, all images in this work were then
processed with the lsqnonneg function in MATLAB, with matrices 𝐴 and
𝑏 as its inputs. NNLS was chosen to solve for 𝑥 because this technique
is faster and readily available in MATLAB, while also producing a very
similar solution as l1-minimization solvers do.

A comparison between the images produced by the 23 × 23 array and
the 11 × 11 array is shown in Fig. 3. It was determined that an 11 × 11
would be a suitable and practical array size for a physical experiment.
Due to availability of a rectangular 250-gallon water tank, another
MCNP model with these new characteristics was built. The images
produced as a function of 𝐾 are depicted in Fig. 4 which shows that
significant degradation of image quality was observed below 𝐾 = 60.
The source shape and location were changed to a larger ring placed in
the middle of the collimator to facilitate better comparison of image
quality as a function of 𝐾.

For measurements with low count rates, large relative error in 𝑏 is
expected. This will in turn result in large uncertainties in 𝑥. Ideally, the
determination of the minimum 𝐾 would be more precise by performing
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Fig. 2. Comparison between the solution produced by l1-MAGIC and lsqnonneg for a cylindrical tank with 23 × 23 array for 𝐾 = 300.

Fig. 3. The image produced using a cylindrical tank for a ring source at top-right corner by (a) 23 × 23 simulation data with 𝐾 = 300, and (b) 11 × 11 simulation data with 𝐾 = 100.
The dotted plot depicting a ring in the bottom figures is the source plot displayed using the MCNP Visual Editor software with the top view of the array.

many reconstructions from multiple data sets (each data set contains
measurements for 100 configurations). However, the simulations done
so far are meant to serve as a benchmark for the actual experiment.
For example, it should be possible to start seeing the source shape or
location when at least 𝐾 = 50 measurements have been obtained. In the
future, multiple data set reconstructions will be implemented for final
design optimization.

MCNP simulations for this rectangular water tank show that for a
ring source strength of 100μCi with 252Cf fission spectrum, the average
total number of neutrons crossing the bottom of the tank for all of the
configurations is 2.58± 1.6 ns−1. Assuming a neutron background of 0.5
ns−1 and a detector efficiency of 0.01, a 10-minute measurement for one

configuration would result in an expected average count of 15.5 ± 3.9
and an expected background count 3.0 ± 1.7. These measurements are
not statistically the same within 2𝜎 of each other, hence a 10-minute
count (or longer) would be sufficient for analysis through the image
reconstruction process.

4. Conclusion

MCNP simulation results indicate that an 11 × 11 array of PVC pipes
would be sufficient and feasible to perform a physical experiment for
neutron source image reconstruction. Simulations showed that image
quality allowing for neutron source shape and location determination
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Fig. 4. Images produced at different 𝐾 values for a simulation of a ring source at the center of a rectangular tank with an 11 × 11 array.

is obtained with as low as 50% of the total pixels compared to the
conventional raster scan method. This proves to be useful in realizing
a system that is less expensive and more efficient in localizing and
identifying the shape of a neutron source. This system is considered as
inexpensive as it can only be built using water, PVC pipes, a water tank,
and a water pumping system.
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