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a b s t r a c t

The ever evolving complexity of real-world problems had become an impetus for the development of many new
and efficient optimization algorithms. Meta-heuristics based on evolutionary computation and swarm intelligence
are successful examples of nature-inspired optimization techniques. In this work, a new Dynamic Social Behavior
(DSB) algorithm is proposed to solve global optimization problems. The DSB algorithm is based on the simulation
of cooperative behavior of animal groups. In the proposed algorithm, individuals emulate the interaction of
individuals based on biological laws of cooperative colony. This algorithm partially adopts the foraging strategy
of animal groups and utilizes recruitment signal as a means of information transfer among individuals. In order
to illustrate the proficiency and robustness of the proposed algorithm, it is compared with other well-known
evolutionary algorithms. The comparison examines several series of widely used benchmark functions and an
engineering problem on hyper beamforming optimization. The results testifies the superior performance of DSB
compared with other state-of-the-art meta-heuristics.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Meta-heuristics optimization algorithms has attracted great interest
in the last two decades. Application of meta-heuristic algorithms have
permeated into almost all areas of sciences, engineering and industries,
from computational intelligence to business planning, from data mining
to optimization, and from bioinformatics to industrial applications.

Despite the popularity and success of meta-heuristics, there remains
a big question of which meta-heuristic technique is best suited to solve
all optimization problem. In this connection, the No Free Lunch (NFL)
theorem (Wolpert and Macready, 1997) would be very much relevant
to answer the question. According to this theorem, it is impossible to
have a meta-heuristic that is best suited for all optimization problems.
Simply put, a specific meta-heuristic could perform extremely well on
a set of problem and may show a poor performance on another set of
problems. In this regard, the findings of NFL gives motivation to develop
new meta-heuristics which makes this field of study highly active over
the years.

Meta-heuristics algorithms are generally based on mathematical
programming or formal logic which makes it an effective solver for
complex optimization problems compared to conventional Evolutionary
Algorithm (EA) and Swarm Intelligence (SI) methods. In order to
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improve the solution quality in EA, the population have to determine
whether to explore the unexplored search space or to exploit the
previously evaluated positions. The ability of an EA to search for the
global optimum very much depends on its ability to find the proper
balance between the exploration of the search space and exploitation of
existing elements. Pure exploration increases the potential to seek for
new solutions but degrades the precision of the evolutionary process.
Likewise, pure exploitation enhances existing solutions but adversely
causes the evolutionary process to get stuck in local optima. Up to date,
the issue of achieving an ideal exploration–exploitation balance is still
an open ended subject matter within the framework of evolutionary
algorithms.

Generally, EA exhibits the uniform behavioral pattern as the individ-
uals are defined with the same characteristics. Therefore, the algorithm
lacks the search operator to generate a scenario with different individual
characteristics. By incorporating these type of operators, the algorithm
characteristics such as population diversity or searching capabilities
could be improved. In branch of SI, quite a number of algorithms
have emerged in the past decades. However, several algorithms such as
PSO, ABC and the more recently proposed GWO are widely employed
and studied among researchers. Nevertheless, these algorithms exhibit
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several shortcomings such as low solving precision, inability to escape
from local minima and premature convergence (Yu and Li, 2015). These
deficiencies are caused by the search operators which are employed to
manipulate the individual positions. In the case of PSO, the position
of every individual is updated in the subsequent iteration cycle based
upon the inclination to move towards the best individual in the entire
population. In the case of ABC, a randomly chosen individual will be
the center of attraction whereas in the case of GWO, the attraction is
directed towards the position of the best three agents. Even though
such operators encourages dynamic behavioral pattern, the operator
tends to divert the entire population towards the best particles or causes
the population to diverge without control as the algorithm evolves.
This in turn damages the exploration–exploitation balance and leads to
premature convergence.

In this paper, a new SI based algorithm inspired by social behavior of
communal groups named Dynamic Social Behavior (DSB) is proposed.
This work attempts to find the proper mechanism to balance the
exploitation and exploration with the ability to track the best solution.
The employment of community based social behavior as a metaphor
introduces new concepts in the field of evolutionary computing. The
concepts involve dividing the population into various search categories
and apply collective knowledge search operators to each categories.
This strategy allows the population to maintain its size and yet makes
it possible to enhance the exploration–exploitation balance. The social
behavior element in DSB introduces a new computational mechanism
which has three distinctive descriptions. Firstly, every individual is
evaluated separately according to their behavioral characteristics. Sec-
ondly, all the members of the population share the same communication
mechanism to allow the dissemination of crucial information pertaining
to the process of changing the search operators. Thirdly, the search
operators utilize the global information (positions of all the individual
types) to modify the position of a particular individual type.

The proposed algorithm has been tested by solving the CEC 2005
benchmark problems as well as a complex real world problem related
to hyper beam antenna design. The optimization of hyper beamforming
is considered as a complex problem as it has strong nonlinearities with
many local minima. An efficient optimization algorithm is required to
generate the optimal hyper beam radiation pattern. The DSB algorithm
is benchmarked with the original PSO, ABC and GWO algorithms re-
spectively. This approach of benchmarking with the original algorithms
was suggested in Fong et al. (2016) to prove the novelty of any new
meta-heuristic design (the inner designs are fundamentally different
from existing algorithms) as the variants of the original algorithms
have several similar and widely used core components from the original
algorithm. The results display a high performance of DSB in searching
for a global optimum and as well as in generating optimal hyper beams.

This paper is organized as follows. Section 2 presents a literature
review on SI algorithms. Section 3 describes the proposed DSB algorithm
in detail. The problem descriptions and evaluation methods are outlined
in Section 4 whereas Section 5 presents the experimental results fol-
lowed by discussion. Finally, Section 6 concludes the work and suggests
directions for future studies.

2. Literature review

Meta-heuristic algorithms are often nature-inspired and can be
divided into three main branches namely evolutionary (EA), physics-
based and SI algorithms. The first branch, EAs are generally inspired
by concepts of natural evolution. Generally, the optimization is done
by generating an initial random population and evolving the population
over a period of certain iteration values. During each iteration, a new set
of population would be created by imposing certain sets of operators on
the previous generation. These sets of operators will ensure that the best
candidate will have higher probability to participate in the generation
of the new population thus creating a better population compared to
the previous generation(s). This is the general principles of how an

initial random population is evolved over the course of generations.
Some of the most prominent EAs are Genetic Algorithm (GA) (Gold-
berg, 1989), Genetic Programming (GP) (Koza, 1992), Evolutionary
Programming (EP) (Yao et al., 1999), Evolution Strategy (ES) (Beyer
and Schwefel, 2002), Differential Evolution (DE) (Storn and Price, 1997)
and Biogeography-Based Optimizer (BBO) (Simon, 2008).

The second branch of meta-heuristics focuses on physics-based
techniques that mimics certain physical laws. Physical rules such as
electromagnetic force, gravitational force, weights and inertia force are
applied to propel the movement of individuals in the search space.
This mechanism is what differentiates EAs and physics-based tech-
niques. Some of the most popular algorithms are Gravitational Search
Algorithm (GSA) (Rashedi et al., 2009), Curved Space Optimization
(CSO) (Moghaddam et al., 2012), Gravitational Local Search (GLSA)
(Hosseinabadi et al., 2015), Charged System Search (CSS) (Kaveh and
Talatahari, 2011), Central Force Optimization (CFO) (Formato, 2009),
Small-World Optimization (SWO) (Xiaohu et al., 2009) and Artificial
Chemical Reaction Optimization (ACROA) (Alatas, 2011).

The third branch of meta-heuristics is the SI algorithms which will
the prime focus of this work. The mechanism of SI algorithms are
almost similar to physics-based algorithm but the search process is
purely inspired by the social behavior of swarms, flocks, herds or schools
of creatures in nature. The individual navigation is done by imposing
certain operators based on the mathematical model of social behavior
of communal groups and collective social knowledge. Some of the SI
algorithms are as follows:

∙ Ant Colony Optimization (ACO) (Dorigo and Stützle, 2004).
∙ Cuckoo Search (CS) (Yang, 2013).
∙ Firefly Algorithm (FA) (Yang, 2013).
∙ Bat Algorithm (BA) (Yang and He, 2013).
∙ Dolphin Partner Optimization (DPO) (Shiqin et al., 2009).
∙ Monkey Search (MS) (Mucherino and Seref, 2007).

Some of the popular SI algorithms are Particle Swarm Optimization
(PSO) (Kennedy and Eberhart, 1995), Artificial Bee Colony (ABC)
(Karaboga and Basturk, 2007) and the recent Grey Wolf Optimizer
(GWO) (Mirjalili et al., 2014). PSO is represented by a swarm particles
and their respective positions in the search space denotes the possible
solution for the optimization problem. PSO utilizes the information of
individual experience and socio-cognitive tendency to manipulate the
movements of these particles. These two kinds of information corre-
spond to cognitive learning and social learning which will eventually
lead the population to perform better optimization (Yu and Li, 2015).
ABC mimics the collective behavior of bees in finding food sources.
The bees are divided into three groups namely the scout bees, the
onlooker bees and the employee bees. The scout bees are responsible
for exploring the search space, whereas the onlooker and the employee
bees exploit the potential solutions found by scout bees (Mirjalili et al.,
2014). The GWO is a recently proposed SI algorithm which mimics the
social leadership and hunting behavior of grey wolves in their natural
habitat. The population is divided into four groups: alpha, beta, delta
and omega. The first three groups of wolves will guide the other wolves
towards the promising areas of the search space.

Even though PSO, ABC and GWO are one of the most popular
swarm algorithms for solving complex optimization problems, they
display certain flaws such as premature convergence, inability to jump
over local optima and prone to stagnation in local solutions (Wang
et al., 2011; li Xiang and qing An, 2013; Mirjalili et al., 2014). Such
problems could have been caused by the set of operators applied on
each individual positions. In the case of PSO, every individual position
is updated during every iteration based on the attraction towards the
position of the best individual seen so far. In ABC, the individual position
update is done based on attraction towards randomly chosen individuals
whereas in GWO, the attraction is towards a fixed set of individuals.
As the iteration evolves, these operators cause the entire population
to revolve around the best individual or diverges without control. In
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either case, it damages the exploration–exploitation balance and leads to
premature convergence (Banharnsakun et al., 2011; Wang et al., 2013).

The principle of swarm phenomenon or collective nature has been
extensively studied in animal behavior ecology. Communal animals
gather and live together to increase the chances of securing a food
source (foraging) and reduce the energy cost in this process (Sumpter,
2010). In order to emulate the social foraging behavior, researchers
have established two foraging models namely Producer–Scrounger (PS)
model (Barnard and Sibly, 1981) and Information Sharing (IS) model
(Clark and Mangel, 1984). In the PS model, the individuals are divided
into leaders and followers whereas in IS model, individuals perform
search operation while communicating with other individuals to look for
better solution potentials. The PS model has already been introduced in
GWO and have displayed remarkable outcomes (Mirjalili et al., 2014).
This leaves room to venture into the IS model and also one of the
motivation for this work to incorporate IS model to control the searching
pattern of the proposed algorithm.

In recent times (late 2015 to early 2017), there has been various
variants of PSO, ABC and GWO such as efficient player selection
strategy based diversified particle swarm optimization (Agarwalla and
Mukhopadhyay, 2017), composite particle algorithm (De et al., 2016),
cooperative learning PSO (Alexandridis et al., 2016), comprehensive
learning ABC (Su et al., 2017), adaptive ABC (Song et al., 2017), multi-
objective GWO (Mirjalili et al., 2016) and modified GWO (Mittal et
al., 2016). These development implies that each meta-heuristic method
possess certain advantages and works well when applied in certain
engineering domain. In (Fong et al., 2016), the authors managed to
demonstrate that any incremental modification on any meta-heuristics
can potentially enhance its performance. It is a matter of which com-
ponents are chosen to assemble into a new hybrid or what parameter
settings are chosen in applying the hybrid to a particular problem
(Fong et al., 2016). This work aims to develop inner designs which
are fundamentally different from the existing algorithms as will be
explained in the subsequent sections.

3. Dynamic social behavior

Dynamic Social Behavior (DSB) algorithm is a new paradigm for
designing evolutionary optimization algorithms inspired by concepts
adopted from evolution of social behavior of communal groups and
collective social knowledge. In a nutshell, social behavior relates how
a particular social member interact with each other within its natural
habitat. As such, the proposed algorithm utilizes certain interaction
rules with information transfer strategies (recruitment signal) which
resembles collective social behavior as optimization operators on a pop-
ulation of individuals. Another new feature included in the optimization
operator is to dynamically control the search process based on the
average performance of the population to ensure that the search process
is guided towards the median value. Hence, the name Dynamic Social
Behavior was adopted for this algorithm.

Following the approach of Couzin et al. (2002), Cuevas et al. (2012)
and Sumpter (2010), DSB emulates the behavior of individuals based
upon the relative position and orientation of individuals with respect to
one another. This is achieved by applying local attraction or repulsion
operators according to the signals emitted by the individuals. In this
approach, every individual position from the population represents a
unique solution within the search space. Depending on the individual
supremacy, every individual is assigned with a respective fitness score
indicating its supremacy from highest to the lowest with respect to
the whole population. The overall optimization process exhibits the
collective social behavior in communal groups. The social members
living in a communal habitat utilizes acoustic based recruitment signal
strategy as a means for information transfer and communication. Each
member in the communal habitat holds a position and the quality (or
fitness) of the solution which is evaluated via the objective function
which represents the potential of finding a food source at the position.

The members have the freedom to move freely within the communal
habitat. However, they cannot leave the communal habitat as the
positions off the communal habitat represents unfeasible solutions to the
optimization problem. Every social member will emanate an acoustic
signal which acts as an information exchange about the location of food
from an informed individual to an uninformed individual and also their
respective locations as well.

3.1. Social member structure

The individuals from the population is referred as the social members
which act as the agents of DSB to perform optimization. During initial-
ization, a predefined number of social members, 𝑚 are evenly distributed
in the communal habitat. Each member holds the following information:

∙ The positions of 𝑚 in the communal habitat.
∙ The fitness values of the present position of 𝑚.

The DSB is an iterative algorithm similar to many other evolutionary
algorithms whereby the initial phase is to randomly initialize the
entire population and distribute it evenly across the search space. The
initialization phase begins by defining 𝑁 social member positions in
the search space 𝑆. Each member position, 𝑚 is an 𝑛-dimensional vector
containing the parameter values to be optimized. The predefined lower
initial parameter bound 𝐵𝑙𝑜𝑤

𝑗 and upper initial parameter bound 𝐵ℎ𝑖𝑔ℎ
𝑗

ensures that the social members are uniformly distributed, as described
by the following equation:

𝑚0
𝑖,𝑗 = 𝐵𝑙𝑜𝑤

𝑗 + 𝑟𝑎𝑛𝑑(0, 1) ⋅ (𝐵ℎ𝑖𝑔ℎ
𝑗 − 𝐵𝑙𝑜𝑤

𝑗 )
𝑖 = 1, 2,… , 𝑁 ; 𝑗 = 1, 2,… , 𝑛

(1)

where 𝑗 and 𝑖 are the parameter and individual indexes respectively.
Hence, 𝑚𝑖,𝑗 is the 𝑗th parameter of the 𝑖th member position. The
superscript zero indicates the initial population whereas the 𝑟𝑎𝑛𝑑(0, 1)
function generates a random number within the range of 0–1.

3.2. Fitness allocation

In communal habitat, the size of the member plays a vital role in
determining the individual capacity to perform better over the assigned
tasks. Member with a larger size implies that the individual has a higher
fitness score and naturally tends to perform better. In order to emulate
this approach, every individual is assigned a weight value, 𝑤𝑖 which
represents the quality of the solution which is affiliated to the member
𝑖 of the population 𝑀 . The fitness allocation is done by calculating the
weight of every member based on the following equation:

𝑤𝑖 =
𝐹 (𝑚𝑖) −𝑤𝑜𝑟𝑠𝑡𝑚
𝑏𝑒𝑠𝑡𝑚 −𝑤𝑜𝑟𝑠𝑡𝑚

(2)

where 𝐹 (𝑚𝑖) represents the fitness score obtained by evaluating the
objective function 𝐹 (⋅) with respect to the member position 𝑚𝑖. This
work focuses on minimizing optimization problem hence the values
𝑤𝑜𝑟𝑠𝑡𝑚 and 𝑏𝑒𝑠𝑡𝑚 are defined as:

𝑏𝑒𝑠𝑡𝑚 = min (𝐹 (𝑚𝑖))
𝑖∈{1,2,…,𝑁}

and 𝑤𝑜𝑟𝑠𝑡𝑚 = max (𝐹 (𝑚𝑖))
𝑖∈{1,2,…,𝑁}

. (3)

3.3. Modeling of the acoustic based recruitment signal

Information transfer is one of most effective means of collective
coordination of all the members in the population. This information is
encoded in an acoustic based recruitment signal and transmitted among
the communal members. The signal strength and traversing distance
depends on the weight and distance of the member which has generated
them. Since the received signal strength is relative to the signal source,
it is only natural that members located in a distant position will detect
weaker signals whereas the members with a close proximity with the
member which has generated the signals will detect a stronger signals.
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The information transmitted by member 𝑗 will be perceived by member
𝑖 based on the following model:

𝑆𝑖𝑔𝑖,𝑗 = 𝑤𝑗 ⋅ 𝑒
−𝑑2𝑖,𝑗 (4)

where 𝑑𝑖,𝑗 = ‖𝑚𝑖 − 𝑚𝑗‖, which is the Euclidean distance between the
member 𝑖 and 𝑗.

By considering all the possible pair of individuals within the entire
population, it is possible to compute all the perceived signals. Neverthe-
less, the DSB takes a different approach towards the signal transfer to
make the information transfer more effective rather than just a random
information transfer. The two special signal transfer has been identified
as:

1. The signal transmitted by member 𝑐 (𝑚𝑐 ) and perceived by mem-
ber 𝑖 (𝑚𝑖). Member 𝑐 (𝑚𝑐 ) has two distinctive characteristics: it has
a higher weightage compared to member 𝑖(𝑤𝑐 > 𝑤𝑖) and has the
shortest distance to member 𝑖. The signal perceived by member
𝑖, 𝑆𝑖𝑔𝑐𝑖 is expressed as:

𝑆𝑖𝑔𝑐𝑖 = 𝑤𝑐 ⋅ 𝑒
−𝑑2𝑖,𝑐 . (5)

2. The signal 𝑆𝑖𝑔𝑏𝑖 perceived by the member 𝑖 as a result of the
information transmitted by the member 𝑖 (𝑚𝑏), with 𝑏 being the
individual holding the best weight (best fitness value) of the
entire population 𝑀 , such that 𝑤𝑏 = 𝑚𝑎𝑥𝑖∈{1,2,…,𝑁}(𝑤𝑖). The
signal transmitted by member 𝑖 (𝑚𝑏) which holds the best fitness
score (best weight) in the entire population and perceived by
member 𝑖. The signal perceived by member 𝑖, 𝑆𝑖𝑔𝑏𝑖 is expressed
as:

𝑆𝑖𝑔𝑏𝑖 = 𝑤𝑏 ⋅ 𝑒
−𝑑2𝑖,𝑏 (6)

where 𝑤𝑏 = 𝑚𝑎𝑥𝑖∈{1,2,…,𝑁}(𝑤𝑖).

Fig. 1 illustrates the difference between these two signal transmis-
sions: (a) 𝑆𝑖𝑔𝑐𝑖 and (b) 𝑆𝑖𝑔𝑏𝑖.

3.4. Cooperative search operators

The efficacy of any meta-heuristics is more or less governed by
exploration and exploitation strategies which are implemented as search
operators iteratively (Fong et al., 2016). These dual steps are categorized
as global exploration (exploration) and local intensification (exploita-
tion). Exploration is the strategy undertaken to diversify its search
agents from its current position over the search space by means of
sporadically migrations. This function enhances the chances of finding
a better solution and avoids the problem of getting stuck at a local
optima. However, the process of exploitation is a means of steering
the search agents to a given neighborhood strategically (Fong et al.,
2016). DSB algorithm incorporates certain interaction rules over other
communal members as a measure to implement these dual step process.
The first process (exploration) resembles collective social behavior that
manipulates the orientation and relative position of members with
respect to their neighbors. This is achieved by applying local attraction
and repulsion operators in accordance with the signal strength perceived
over the communal habitat. As explained in the previous section, since
the signal strength and traversing distance depends on the weight
and distance of the member which has generated them, either a large
member (higher weight) would have generate the signal or the member
which is perceiving the strong signal is situated in close proximity with
the member which had produced them. The attraction and repulsion
operation over the selected individuals will be decided based upon
internal factors such as random phenomena and curiosity. The second
process (exploitation) is achieved by dividing the population into sub
populations and steering the weak individuals towards the weighted
mean of the population.

3.4.1. Exploration operators
To implement these attraction and repulsion operations over the

communal members, a new operator is defined. In a nutshell, the
attraction and repulsion operations involves the positional shift of the
individual 𝑖 during every iteration cycle. These positional shifts are
driven by a combination of three elements. The first element involves
the positional shift towards the individual which produces the signal
𝑆𝑖𝑔𝑐𝑖 and holds a higher weight. The second one involves the positional
shift with regards to the best individual in the entire population 𝑀
and emanates the signal 𝑆𝑖𝑔𝑏𝑖. Lastly, the third element utilizes random
positional movement.

The selection criteria to implement either the attraction or the repul-
sion operator is modeled as a stochastic decision since the implemen-
tation depends on several random scenario. In order to emulate these
random scenarios, a uniform random number 𝑟𝑚 is generated within
the range [0, 1] and evaluated against a threshold value. An attraction
movement will be generated if the 𝑟𝑚 value is less than the threshold
value, 𝑃𝐹 otherwise a repulsion movement will be implemented. The
attraction and repulsion operator can be expressed as:

𝐦𝑘+1
𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐦𝑘
𝑖 + 𝛼 ⋅ 𝑆𝑖𝑔𝑐𝑖 ⋅ (𝐦𝑐 −𝐦𝑘

𝑖 ) + 𝛽 ⋅ 𝑆𝑖𝑔𝑏𝑖 ⋅ (𝐦𝑏 −𝐦𝑘
𝑖 )

+ 𝛿 ⋅
(

𝑟𝑎𝑛𝑑 − 1
2

)

with probability 𝑃𝐹
𝐦𝑘

𝑖 + 𝛼 ⋅ 𝑆𝑖𝑔𝑐𝑖 ⋅ (𝐦𝑐 −𝐦𝑘
𝑖 ) − 𝛽 ⋅ 𝑆𝑖𝑔𝑏𝑖 ⋅ (𝐦𝑏 −𝐦𝑘

𝑖 )

+ 𝛿 ⋅
(

𝑟𝑎𝑛𝑑 − 1
2

)

with probability 1 − 𝑃𝐹

(7)

where 𝑘 denotes the iteration number whereas 𝛼, 𝛽, 𝛿 and rand are
random numbers between [0,1]. The nearest individual to 𝑖 that holds
a higher weight and the best individual of the entire population 𝑀 are
denoted as member 𝑚𝑐 and 𝑚𝑏 respectively.

This type of interaction operator avoids the quick concentration of
members at a particular point and encourages local interaction within
its neighborhood. That is because the new positional shift represents
a movement that is a combination of previous position vector over
the global best individual 𝑚𝑏 and local best individual 𝑚𝑐 during that
particular iteration. The random operator also allows the members to
explore unexplored search space. The implementation of this scheme
brings about two advantages. Firstly, the algorithm is not prone to pre-
mature convergence since the members are not solely driven towards the
global best position. Secondly, the scheme encourages the members to
explore their own neighborhood in advance before converging towards
the global best position. Such implementation enhances the exploration
nature of the algorithm hence increasing its capability to perform global
search.

3.4.2. Exploitation operators
It is certainly undesirable to have the search process under the strong

influence of either very good members or extremely bad members.
Therefore, a filtering mechanism is introduced to partially control the
search process based upon the average performance of a sub-group of
the entire population. In order to incorporate the cooperative search
operator, the population is divided into two groups namely the domi-
nant members 𝐷 and the non-dominant members 𝑁𝐷. Comparatively, 𝐷
members have better fitness characteristics than the 𝑁𝐷 members. The
segregation is done by evaluating their respective weights with regards
to the median value. The dominant individuals 𝐷 are members with
a weight value above the median value of the population whereas the
remaining individuals are categorized as non-dominant 𝑁𝐷 members.
The computation is done by arranging the member population 𝑀
(𝑀 = {𝑚1, 𝑚2, … , 𝑚𝑁}) in decreasing order according to their weight
value. The member whose weight is 𝑤𝑚𝑒𝑑 and located in the middle is
considered as the median member. To prompt the new position of the
communal member, the search operator is modeled as:

𝐦𝑘+1
𝑖 = 𝐦𝑘

𝑖 + 𝛼 ⋅

(

∑𝑁
𝑖=1 𝐦

𝑘
𝑖 ⋅𝑤𝑖

∑𝑁
𝑖=1 𝑤𝑖

−𝐦𝑘
𝑖

)

if 𝑤𝑖 ⩽ 𝑤𝑚𝑒𝑑

(8)
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Fig. 1. Signal transmissions: (a) 𝑆𝑖𝑔𝑐𝑖 and (b) 𝑆𝑖𝑔𝑏𝑖.

where (
∑𝑁

𝑖=1𝐦
𝑘
𝑖 ⋅ 𝑤𝑖∕

∑𝑁
𝑖=1𝑤𝑖) corresponds to the weighted mean of the

population 𝑀 .
The benefit of this operator is that it allows the 𝑁𝐷 members to be

steered towards the weighted mean of the entire population. This search
process is being partially controlled by the average performance of the
population hence protecting the search process from being influenced
by either very good members or extremely bad members.

3.5. Computational procedure

The computational procedure for the proposed algorithm can be
outlined as follows:

Step 1: Define the population size in the entire population 𝑀 . 𝑁 is
considered as the total number of 𝑛-dimensional communal members.

𝑚0
𝑖,𝑗 = 𝐵𝑙𝑜𝑤

𝑗 + 𝑟𝑎𝑛𝑑(0, 1) ⋅ (𝐵ℎ𝑖𝑔ℎ
𝑗 − 𝐵𝑙𝑜𝑤

𝑗 )
𝑖 = 1, 2,… , 𝑁 ; 𝑗 = 1, 2,… , 𝑛

where rand generates a random number between 0-1 whereas floor(.)
maps a real number to an integer number.

Step 2: Calculate the weight of every individual of 𝑀 (Section 3.2).

Algorithm 1 Weight Assignment
for (𝑖 = 1, 𝑖 < 𝑁 + 1; 𝑖 + +) do

𝑤𝑖 =
𝐹 (𝑚𝑖)−𝑤𝑜𝑟𝑠𝑡𝑚
𝑏𝑒𝑠𝑡𝑚−𝑤𝑜𝑟𝑠𝑡𝑚

end for

where 𝑏𝑒𝑠𝑡𝑚 = min (𝐹 (𝑚𝑖))
𝑖∈{1,2,…,𝑁}

and 𝑤𝑜𝑟𝑠𝑡𝑚 = max (𝐹 (𝑚𝑖))
𝑖∈{1,2,…,𝑁}

Step 3: Initiate individual move based on the cooperative search
operators (Section 3.4).

Algorithm 2 Cooperative Operator
for (𝑖 = 1, 𝑖 < 𝑁 + 1; 𝑖 + +) do

Calculate 𝑆𝑖𝑔𝑐𝑖 and 𝑆𝑖𝑔𝑏𝑖 (Section C)
if (𝑟𝑚 < 𝑃𝐹 ); where 𝑟𝑚 ∈ 𝑟𝑎𝑛𝑑(0, 1) then

𝐦𝑘+1
𝑖 = 𝐦𝑘

𝑖 +𝛼 ⋅𝑆𝑖𝑔𝑐𝑖 ⋅(𝐦𝑐−𝐦𝑘
𝑖 )+𝛽 ⋅𝑆𝑖𝑔𝑏𝑖 ⋅(𝐦𝑏−𝐦𝑘

𝑖 )+𝛿 ⋅(𝑟𝑎𝑛𝑑−
1
2 )

else
𝐦𝑘+1

𝑖 = 𝐦𝑘
𝑖 +𝛼 ⋅𝑆𝑖𝑔𝑐𝑖 ⋅(𝐦𝑐−𝐦𝑘

𝑖 )−𝛽 ⋅𝑆𝑖𝑔𝑏𝑖 ⋅(𝐦𝑏−𝐦𝑘
𝑖 )+𝛿 ⋅(𝑟𝑎𝑛𝑑−

1
2 )

end if
end for

Step 4: Perform the median search to improve individuals search
pattern (Section 3.4).

Step 5: The process is completed if the stopping criteria is met else
repeat Step 2.

Algorithm 3 Median Search
Find the median individual 𝑤𝑚𝑒𝑑 from M
for (𝑖 = 1, 𝑖 < 𝑁 + 1; 𝑖 + +) do

if 𝑤𝑖 ⩽ 𝑤𝑚𝑒𝑑 then

𝐦𝑘+1
𝑖 = 𝐦𝑘

𝑖 + 𝛼 ⋅
(

∑𝑁
𝑖=1 𝐦

𝑘
𝑖 ⋅𝑤𝑖

∑𝑁
𝑖=1

−𝐦𝑘
𝑖

)

end if
end for

4. Problem descriptions and evaluation method

This section will describe the 25 well-known real-parameter opti-
mization benchmark problems and an engineering optimization prob-
lem on hyper beamforming to produce narrow First Null Beam Width
(FNBW) with reduced Side Lobe Level (SLL) to judge the performance
of the proposed algorithm.

4.1. Benchmark functions

A set of 25 benchmark functions are utilized to evaluate the per-
formance of DSB. Table 1 lists the benchmark functions. The CEC
2005 special session on real-parameter optimization defines the problem
definitions and evaluation criteria for each one of these base functions.
These benchmark functions are classified into four categories:

∙ Group I: 𝑓1 − 𝑓5 are unimodal functions.
∙ Group II: 𝑓6 − 𝑓12 are multimodal functions.
∙ Group III: 𝑓13 − 𝑓14 are expanded multimodal functions.
∙ Group IV: 𝑓15 − 𝑓25 are hybrid multimodal functions.

The list of all the benchmark functions, its implementation and
evaluation methods can be found in Suganthan et al. (2005). In order
to increase the difficulty level, all the benchmark functions are either
shifted or rotated minimization problems where 𝐷 denotes the dimen-
sion of the problem. Shifted or rotated functions indicate that their
global minimum is not located at zero and possess a challenge for the
algorithm to locate the global minimum easily.

The unimodal functions in Group I are utilized to test the converging
performance of DSB which is suitable for benchmarking its exploitation
capabilities. Functions in Group II are employed to evaluate the ability of
DSB to escape from getting trapped in local optima and avoid premature
convergence. Group II functions have a large number of local minima
points which serves the purpose of benchmarking the exploration ability
of DSB. To push the searching capability of DSB to another level,
more complex functions are introduced in Group III. Finally, Group IV
functions consist of various sub-components with different properties
which will be able to test the performance of DSB in handling both
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Table 1
Benchmark functions.

Function Search space 𝑓𝑏𝑖𝑎𝑠 Name

𝑓1(𝑥) =
∑𝑁

𝑛=1𝑧
2
𝑖 + 𝑓𝑏𝑖𝑎𝑠 𝑥 ∈ [−100, 100]𝐷 −450 Shifted Sphere Function

𝑓2(𝑥) =
∑𝐷

𝑖=1(
∑𝑖

𝑗=1𝑧𝑗 )
2 + 𝑓𝑏𝑖𝑎𝑠 𝑥 ∈ [−100, 100]𝐷 −450 Shifted Schwefel’s Problem 1.2

𝑓3(𝑥) =
∑𝐷

𝑖=1(10
6)

𝑖−1
𝐷−1 𝑧2𝑖 + 𝑓𝑏𝑖𝑎𝑠 𝑥 ∈ [−100, 100]𝐷 −450 Shifted Rotated High Conditioned Elliptic Function

𝑓4(𝑥) = (
∑𝐷

𝑖=1(
∑𝑖

𝑗=1𝑧𝑗 )
2) ∗ (1 + 0.4|𝑁(0, 1)|) + 𝑓𝑏𝑖𝑎𝑠 𝑥 ∈ [−100, 100]𝐷 −450 Shifted Schwefel’s Problem 1.2 with Noise in Fitness

𝑓5(𝑥) = max{|𝐴𝑖𝑥 − 𝐵𝑖|} + 𝑓𝑏𝑖𝑎𝑠 𝑥 ∈ [−100, 100]𝐷 −310 Schwefel’s Problem 2.6 with Global Optimum on Bounds
𝑓6(𝑥) = (

∑𝐷−1
𝑖=1 (100(𝑧2𝑖 − 𝑧𝑖+1)2 + (𝑧𝑖 − 1)2)) + 𝑓𝑏𝑖𝑎𝑠 𝑥 ∈ [−100, 100]𝐷 390 Shifted Rosenbrock’s Function

𝑓7(𝑥) = (
∑𝐷

𝑖=1
𝑧2𝑖

4000
−
∏𝐷

𝑖=1 cos(
𝑧𝑖
√

𝑖
) + 1 + 𝑓𝑏𝑖𝑎𝑠) 𝑥 ∈ [0, 600]𝐷 −180 Shifted Rotated Griewank’s Function without Bounds

𝑓8(𝑥) = −20 exp(−0.2
√

1
𝐷

∑𝐷
𝑖=1𝑧

2
𝑖 ) 𝑥 ∈ [−32, 32]𝐷 −140 Shifted Rotated Ackley’s Function with Global Optimum on Bounds

−exp( 1
𝐷

∑𝐷
𝑖=1 cos(2𝜋𝑧𝑖)) + 20 + 𝑒 + 𝑓𝑏𝑖𝑎𝑠

𝑓9(𝑥) =
∑𝐷

𝑖=1(𝑧
2
𝑖 − 10 cos(2𝜋𝑧𝑖) + 10) + 𝑓𝑏𝑖𝑎𝑠 𝑥 ∈ [−5, 5]𝐷 −330 Shifted Rastrigin’s Function

𝑓10(𝑥) =
∑𝐷

𝑖=1(𝑧
2
𝑖 − 10 cos(2𝜋𝑧𝑖) + 10) + 𝑓𝑏𝑖𝑎𝑠 𝑥 ∈ [−5, 5]𝐷 −330 Shifted Rotated Rastrigin’s Function

𝑓11(𝑥) = (
∑𝐷

𝑖=1(
∑𝑘 max

𝑘=0 [𝑎𝑘 cos(2𝜋𝑏𝑘(𝑧𝑖 + 0.5))])) 𝑥 ∈ [−0.5, 0.5]𝐷 90 Shifted Rotated Weierstrass Function
−𝐷

∑𝑘 max
𝑘=0 [𝑎𝑘 cos(2𝜋𝑏𝑘 · 0.5)] + 𝑓𝑏𝑖𝑎𝑠

𝑓12(𝑥) =
∑𝐷

𝑖=1(𝐴𝑖 − 𝐵𝑖(𝑥))2 + 𝑓𝑏𝑖𝑎𝑠 𝑥 ∈ [−𝜋, 𝜋]𝐷 −460 Schwefel’s Problem 2.13
𝐴𝑖 =

∑𝐷
𝑖=1(𝑎𝑖𝑗 sin 𝛼𝑗 + 𝑏𝑖𝑗 cos 𝛼𝑗 ),

𝐵𝑖(𝑥) =
∑𝐷

𝑖=1(𝑎𝑖𝑗 sin 𝑥𝑗 + 𝑏𝑖𝑗 cos 𝑥𝑗 ),
𝑓𝑜𝑟 𝑖 = 1,… , 𝐷

𝑓13(𝑥) = 𝐹8(𝐹2(𝑧1 , 𝑧2)) + 𝐹8(𝐹2(𝑧2 , 𝑧3)) +… 𝑥 ∈ [−3, 1]𝐷 −130 Shifted Expanded Griewank’s plus
+𝐹8(𝐹2(𝑧𝐷−1 , 𝑧𝐷)) + 𝑓𝑏𝑖𝑎𝑠 Rosenbrock’s Function (F8F2)
𝐹8(𝑥) =

∑𝐷
𝑖=1

𝑧2𝑖
4000

−
∏𝐷

𝑖=1 cos(
𝑧𝑖
√

𝑖
) + 1

𝐹2(𝑥) =
∑𝐷−1

𝑖=1 (100(𝑥2𝑖 − 𝑥𝑖+1)2 + (𝑥𝑖 − 1)2)
𝑓14(𝑥) = 𝐹 (𝑧1 , 𝑧2) + 𝐹 (𝑧2 , 𝑧3) +… + 𝐹 (𝑧𝐷−1 , 𝑧𝐷) 𝑥 ∈ [−100, 100]𝐷 −300 Shifted Rotated Expanded Scaffer’s F6 Function

+𝐹 (𝑧𝐷 , 𝑧1) + 𝑓𝑏𝑖𝑎𝑠
𝐹 (𝑥, 𝑦) = 0.5 + (𝑠𝑖𝑛2 (

√

𝑥2+𝑦2 )−0.5)
(1+0.001(𝑥2+𝑦2 ))2

𝑓15(𝑥) =
∑𝑛

𝑖=1{𝑤𝑖 ∗ [𝑓 ′
𝑖 ((𝑥 − 𝑜𝑖)∕𝜆𝑖 ∗ 𝑀𝑖) + 𝑏𝑖𝑎𝑠𝑖]} + 𝑓𝑏𝑖𝑎𝑠 𝑥 ∈ [−5, 5]𝐷 120 Hybrid Composition Function 1

𝑓16(𝑥) = 𝑓15(𝑀𝑖) 𝑥 ∈ [−5, 5]𝐷 120 Rotated Version of Hybrid Composition Function 𝑓15
𝑓17(𝑥) = 𝐺(𝑥) ∗ (1 + 0.2|𝑁(0, 1)|) + 𝑓𝑏𝑖𝑎𝑠 𝑥 ∈ [−5, 5]𝐷 120 𝑓16 with Noise in Fitness

𝐺(𝑥) = 𝑓16 − 𝑓𝑏𝑖𝑎𝑠16
𝑓18(𝑥) = 𝑓15(𝑀𝑖) 𝑥 ∈ [−5, 5]𝐷 10 Rotated Hybrid Composition Function 1
𝑓19(𝑥) = 𝑓18(𝑀𝑖) 𝑥 ∈ [−5, 5]𝐷 10 Rotated Hybrid Composition Function 1 with narrow basin global optimum
𝑓20(𝑥) = 𝑓18(𝑀𝑖) 𝑥 ∈ [−5, 5]𝐷 10 Rotated Hybrid Composition Function 1 with global optimum on the bounds
𝑓21(𝑥) =

∑𝑛
𝑖=1{𝑤𝑖 ∗ [𝑓 ′

𝑖 ((𝑥 − 𝑜𝑖)∕𝜆𝑖 ∗ 𝑀𝑖) + 𝑏𝑖𝑎𝑠𝑖]} + 𝑓𝑏𝑖𝑎𝑠 𝑥 ∈ [−5, 5]𝐷 360 Rotated Hybrid Composition Function 2
𝑓22(𝑥) = 𝑓21(𝑀𝑖) 𝑥 ∈ [−5, 5]𝐷 360 Rotated Hybrid Composition Function 2 with high condition number matrix
𝑓23(𝑥) = 𝑓21(𝑀𝑖) 𝑥 ∈ [−5, 5]𝐷 360 Non-Continuous Rotated Hybrid Composition Function 2
𝑓24(𝑥) =

∑𝑛
𝑖=1{𝑤𝑖 ∗ [𝑓 ′

𝑖 ((𝑥 − 𝑜𝑖)∕𝜆𝑖 ∗ 𝑀𝑖) + 𝑏𝑖𝑎𝑠𝑖]} + 𝑓𝑏𝑖𝑎𝑠 𝑥 ∈ [−5, 5]𝐷 260 Rotated Hybrid Composition Function 3
𝑓25(𝑥) = 𝑓24(𝑀𝑖) 𝑥 ∈ [2, 5]𝐷 260 Rotated Hybrid Composition Function 3 without bounds

exploration and exploitation capabilities. Due to the massive number
of local optima present in such functions, the ability of DSB to avoid
local optima can be examined.

The evaluation methods are set as follows. The dimension for each
benchmark function, 𝐷 is set as 10. Each function is evaluated for 25
runs and in each run, the termination criteria is set to a maximum
number of 104 × 𝑛 function evaluations. According the requirements set
by (Suganthan et al., 2005), only one fixed parameter setting is allowed
to be used for evaluating the functions in all the groups. To make a
fair comparison of the performance of DSB, similar natured algorithms
such as PSO, ABC and GWO are selected to be benchmarked as well. All
the source codes are adopted from the original author with some minor
changes to adapt to the current benchmark functions. Nevertheless, the
main function and the logic of the algorithms are untouched.

The benchmark test functions utilized in this work contains contin-
uous variables with explicit constraints and limited to static environ-
ments. To adapt DSB to optimize mixed integer linear programming
(MILP) problems, certain modifications are required. Mixed integer lin-
ear programming problems have both implicit constraints and discrete
variables so two methods can be used to deal with these situation. First
is to implement penalty functions to eliminate the implicit constraints.
Secondly, a sigmoid function (piece-wise linear interpolation) can be
introduced to deal with the discrete variables. The discrete variables
are always 0 or 1 variables, so the sigmoid functions can be used to
constrain the variables within [0, 1]. The sigmoid value is compared
with a random value within [0, 1] to determine its discrete value. The
MILP problems optimization is beyond the scope of this work but future
attempts will be made to employ DSB for MILP problems or dynamic
environments.

4.2. Hyperbeam design equations

Compared to conventional beam forming techniques, hyperbeam
technique generates a narrow beam with an improved FNBW and
reduced SLL which are dependent on the exponent parameter value
(𝜇) being selected. The inter element spacing is varied from 𝜆∕2 to
𝜆 uniformly in order to achieve the above mentioned improvements.
Hyperbeam is obtained by subtraction of sum and difference beams,
each raised to the power of exponent 𝜇 (Ram et al., 2013). The sum
beam pattern is generated by summing the absolute complex values of
both left and right half beams as depicted in Fig. 2. On the contrary, the
difference beam pattern is generated by taking the absolute magnitude
of the difference of complex left half beam and right half beam signals as
shown in Fig. 3. From the figure, it can be observed that the difference
beam produces a minimum in the direction of the sum beam at zero
degree which indicates that it is the difference beam.

A broadside linear array of 𝑁 equally spaced isotropic elements is
considered which is symmetric in both geometry and excitation with
respect to the array center (Anitha et al., 2012). For broadside beams,
the array factor is given in Balanis (2012) but a slight modification is
done to the formula by adding the beam-width control coefficient to
control the beam-width:

𝐴𝐹 (𝜃) =
𝑁
∑

𝑛=1
𝐼𝑛𝑒

𝑗(𝑛−1)𝐾𝑑[𝑎. sin 𝜃 cos𝜙−sin 𝜃0 cos𝜙0] (9)

where 𝜃 = angle of radiation of electromagnetic plane wave; 𝑑 =
inter-element spacing; 𝐾 = propagation constant; 𝑁 = total number
of elements in the array; 𝐼𝑛 = excitation amplitude of 𝑛th element; 𝑎 =
beam-width control coefficient. The equations for the creation of sum,
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Fig. 2. Sum beam pattern for 10-element linear array with 𝜇 = 0.5.

Fig. 3. Difference beam pattern for 10-element linear array with 𝜇 = 0.5.

difference, and simple hyperbeam pattern in terms of two half beams
are as follows (Ram et al., 2013):

Sum pattern:

𝑆𝑢𝑚 (𝜃) = |𝑅𝐿| + |𝑅𝑅|. (10)

Difference pattern:

𝐷𝑖𝑓𝑓 (𝜃) = |𝑅𝐿 − 𝑅𝑅| (11)

where

𝑅𝐿 =
𝑁∕2
∑

𝑛=1
𝐼𝑛𝑒

𝑗(𝑛−1)𝐾𝑑[𝑎. sin 𝜃 cos𝜙−sin 𝜃0 cos𝜙0]

𝑅𝑅 =
𝑁
∑

𝑛=𝑁∕2+1
𝐼𝑛𝑒

𝑗(𝑛−1)𝐾𝑑[𝑎. sin 𝜃 cos𝜙−sin 𝜃0 cos𝜙0].
(12)

Hyperbeam is obtained by subtraction of sum and difference beams,
each raised to the power of the exponent 𝜇; the general equation of
hyperbeam is a function of hyperbeam exponent 𝜇 as given in

𝐴𝐹𝐻𝑦𝑝𝑒𝑟(𝜃) =
{

(|𝑅𝐿| + |𝑅𝑅|)𝜇 − (|𝑅𝐿 − 𝑅𝑅|)𝜇
}1∕𝜇 (13)

where 𝜇 ranges from 0.2 to 1. If 𝜇 lies below 0.2, hyperbeam pattern
will contain a large depth spike at the peak of the main beam without
changing in the hyperbeam pattern. If 𝜇 increases more than 1, side
lobes of hyperbeam will be more as compared to conventional radiation
pattern (Ram et al., 2013).

All the antenna elements are assumed isotropic. Only amplitude
excitations, inter-element spacing and beam-width control coefficient
are used to change the antenna radiation pattern. The fitness function

(𝐹𝐹 ) for improving the SLL of radiation pattern of hyperbeam linear
antenna arrays is given in Ram et al. (2013):

𝐹𝐹 = 𝑀𝑎𝑥
|𝐴𝐹𝐻𝑦𝑝𝑒𝑟(𝜃𝑚𝑠𝑙_𝑙𝑒𝑓 𝑡, 𝐼𝑛)|

|𝐴𝐹𝐻𝑦𝑝𝑒𝑟(𝜃0, 𝐼𝑛)|
+𝑀𝑎𝑥

|𝐴𝐹𝐻𝑦𝑝𝑒𝑟(𝜃𝑚𝑠𝑙_𝑟𝑖𝑔ℎ𝑡, 𝐼𝑛)|
|𝐴𝐹𝐻𝑦𝑝𝑒𝑟(𝜃0, 𝐼𝑛)|

(14)

where 𝜃0 is the angle where the highest maximum of central angle is at-
tained in 𝜃 ∈ [−𝜋∕2, 𝜋∕2]. 𝜃𝑚𝑠𝑙_𝑙𝑒𝑓 𝑡 is the angle where maximum side lobe
𝐴𝐹𝐻𝑦𝑝𝑒𝑟(𝜃𝑚𝑠𝑙_𝑙𝑒𝑓 𝑡, 𝐼𝑛) is attained in the lower band of hyperbeam pattern.
𝜃𝑚𝑠𝑙_𝑟𝑖𝑔ℎ𝑡 is the angle where the maximum side lobe 𝐴𝐹𝐻𝑦𝑝𝑒𝑟(𝜃𝑚𝑠𝑙_𝑙𝑒𝑓 𝑡, 𝐼𝑛)
is attained in the upper side band of hyperbeam pattern. In 𝐹𝐹 , both
numerator and denominator are in absolute magnitude. Minimization
of 𝐹𝐹 means maximum reduction of SLL. GWO, PSO, ABC and DSB are
employed individually for minimization of 𝐹𝐹 by optimizing current
excitation weights of elements (𝐼𝑛), inter-element spacing (𝑑) and beam-
width control coefficient (𝑎). Results of the minimization of 𝐹𝐹 and SLL
while maintaining a narrow beam-width are described in the subsequent
section.

5. Experimental results and analysis

This section discusses the numerical experimental results and an-
alyzes the performance of the proposed algorithm on an engineering
problem.

5.1. CEC 2005 problems

The results from the 25 benchmark functions tested on DSB are
compared with the results produced by GWO, PSO and ABC evaluated on
the same 25 functions. The population size has been set to 30 individuals
in all algorithms. The stopping criterion is set to 104 × 𝑛 function
evaluations to conform with the requirements mentioned in the CEC
2005 technical report (Suganthan et al., 2005).

For each algorithms, the parameter settings are configured as fol-
lows:

1. GWO: The variables 𝑎, 𝐴 and 𝐶 are adaptive values which will
be updated automatically during the optimization process. In
order to strike the balance between exploration and exploitation,
variable 𝑎 is decreased from 2 to 0 whereas 𝐴 is decreased lin-
early throughout the iteration process to emphasize exploitation
(Mirjalili et al., 2014). On the other hand, the variable 𝐶 which
emphasizes the exploration/exploitation at any stage is randomly
generated throughout optimization.

2. PSO: The parameters are set to 𝑐1 = 2 and 𝑐2 = 2; the weight
factor decreases linearly from 0.9 to 0.2 (Kennedy and Eberhart,
1995).

3. ABC: The parameter 𝑙𝑖𝑚𝑖𝑡 is set to 100 whereas all the other
settings have been implemented as it is (Karaboga and Basturk,
2007).

4. DSB: The parameter 𝑃𝐹 is set to 0.7 upon experimental trial and
maintained for all function evaluations.

The results of 25 runs for GWO, PSO, ABC and DSB are tabulated in
Tables 2–5. The tabulated data displays the comparative performance
indexes such as the mean, median, the best and the standard deviation
of all the benchmarked algorithms. The best outcome from each function
is highlighted in bold. In addition to that, to evaluate the performance
similarity of DSB with other algorithms, a series of Wilcoxon rank
sum tests on null hypothesis is performed. The null hypothesis is used
to express the relationship between two quantities. The results from
the null hypothesis (all 𝑝 values are less than 5% significance level)
indicate that DSB algorithm has similar relationship with the other
benchmarked algorithms and the results are statistically significant
(not occurred by coincidence due to common noise contained in the
process). This ensures fair comparison of performance indexes with the
other benchmarked algorithms. According to the tabulated results, DSB
outperformed GWO, PSO and ABC in all the benchmark functions. The
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Fig. 4. Comparative convergence plot.

result testifies the better trade-off between exploration and exploitation
in the DSB algorithm.

In order to evaluate the efficiency of the DSB algorithm over GWO,
PSO and ABC algorithms, the method stated in Suganthan et al. (2005)
is employed to analyze the computational complexity of the compared
algorithms. Function 𝑓3 is used as the benchmark evaluation function for
the testing methodology suggested by Suganthan et al. (2005). The 10-
dimension complexity analysis results for DSB, GWO, PSO and ABC are
85.06, 95.11, 83.8 and 84.88 respectively, whereas the 30-dimension
complexity analysis results for DSB, GWO, PSO and ABC are 317.56,
320.35, 316.55 and 317.13. A smaller complexity value means that the

algorithm is less complex and leads to a relatively faster execution speed
under the same condition. From the results, GWO seems to be the most
complicated among all the benchmarked algorithms. Although DSB is
slightly more complicated than PSO and ABC, their complexities are not
far apart. Nevertheless, DSB managed to display better results in large
size problems compared to GWO, PSO and ABC.

From Fig. 4, Tables 2–5, several important observations can be noted:

∙ In terms of statistical test, DSB had outperformed all the com-
pared algorithms. Among all the 25 functions, DSB generated the
best simulations (largest difference) results in functions 14, 18,
20 and 23 compared with GWO, PSO and ABC respectively. Even
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Table 2
Unimodal simulation results for 10-D problems.

Func Algorithm Mean Median Best Std 𝑝 ℎ stats.ranksum

1 GWO 3.58E+01 2.77E+01 3.00E−06 1.04E+02 0 1 1.50E+10
PSO 7.63E+00 1.92E−02 1.36E−03 1.78E+02 0 1 1.50E+10
ABC 5.28E+01 4.79E−02 1.93E−03 4.21E+02 0 1 1.50E+10
DSB 2.47E+00 0.00E+00 0.00E+00 2.21E+02 0 0 0.00E+00

2 GWO 1.36E+02 1.15E+02 4.98E+01 2.51E+02 0 1 1.49E+10
PSO 3.53E+01 3.46E−02 1.34E−03 1.99E+02 0 1 1.43E+10
ABC 9.66E+01 4.48E−02 2.24E−03 5.45E+02 0 1 1.43E+10
DSB 1.82E+01 0.00E+00 0.00E+00 4.28E+02 0 0 0.00E+00

3 GWO 6.53E+05 1.24E+05 3.71E+04 3.25E+06 0 1 1.49E+10
PSO 1.50E+05 1.08E+05 8.23E+04 3.34E+06 0 1 1.49E+10
ABC 5.15E+05 3.16E+05 3.16E+05 1.52E+06 0 1 1.50E+10
DSB 1.01E+05 1.37E+04 1.04E+04 5.94E+06 0 0 0.00E+00

4 GWO 1.43E+02 7.15E−02 3.61E−03 7.34E+02 0 1 1.06E+10
PSO 1.52E+02 1.24E+02 5.61E+01 2.78E+02 0 1 1.42E+10
ABC 5.59E+02 2.04E+02 2.04E+02 8.33E+02 0 1 1.44E+10
DSB 9.70E+01 3.23E−02 2.17E−03 6.23E+02 0 0 0.00E+00

5 GWO 6.20E+02 2.62E+02 1.62E+01 1.11E+03 0 1 1.48E+10
PSO 8.66E+01 6.05E+01 6.05E+01 3.48E+02 0 1 1.48E+10
ABC 8.02E+02 1.78E+02 6.22E+01 1.68E+03 0 1 1.49E+10
DSB 2.13E+01 7.50E+00 7.38E+00 3.11E+02 0 0 0.00E+00

Table 3
Multimodal simulation results for 10-D problems.

Func Algorithm Mean Median Best Std 𝑝 ℎ stats.ranksum

6 GWO 4.64E+05 7.56E+00 1.55E+00 2.75E+07 0 1 1.50E+10
PSO 6.81E+04 1.37E+02 9.74E+01 3.55E+05 0 1 1.50E+10
ABC 1.46E+05 2.27E+04 5.59E+02 2.29E+07 0 1 1.50E+10
DSB 7.10E+05 1.35E−01 1.16E−01 9.07E+07 0 0 0.00E+00

7 GWO 1.27E+03 1.27E+03 1.27E+03 9.17E+00 0 1 1.50E+10
PSO 1.33E+03 1.28E+03 1.27E+03 1.51E+02 0 1 1.50E+10
ABC 1.31E+03 1.28E+03 1.28E+03 7.56E+01 0 1 1.50E+10
DSB 1.27E+03 1.27E+03 1.27E+03 1.64E+01 0 0 0.00E+00

8 GWO 2.02E+01 2.03E+01 2.02E+01 2.94E−02 0 1 6.05E+09
PSO 2.03E+01 2.03E+01 2.02E+01 6.81E−02 0 1 7.99E+09
ABC 2.03E+01 2.03E+01 2.03E+01 2.76E−02 0 1 6.30E+09
DSB 2.03E+01 2.03E+01 2.01E+01 3.80E−02 0 0 0.00E+00

9 GWO 9.20E+00 9.00E+00 5.13E+00 4.35E+00 0 1 1.32E+10
PSO 1.36E+01 8.71E+00 5.21E+00 1.25E+01 0 1 1.35E+10
ABC 1.76E+01 1.22E+01 9.19E+00 1.09E+01 0 1 1.37E+10
DSB 5.89E+00 9.95E−01 9.95E−01 1.15E+01 0 0 0.00E+00

10 GWO 1.09E+01 9.14E+00 9.14E+00 4.65E+00 0 1 8.89E+09
PSO 1.53E+01 9.95E+00 9.95E+00 1.29E+01 3.47E−21 1 9.88E+09
ABC 1.90E+01 2.02E+01 9.99E+00 6.23E+00 0 1 1.18E+10
DSB 1.72E+01 1.35E+01 6.40E+00 1.33E+01 0 0 0.00E+00

11 GWO 7.20E+00 7.79E+00 3.69E+00 1.32E+00 0 1 9.38E+09
PSO 4.54E+00 4.42E+00 4.42E+00 2.83E−01 0 1 5.52E+09
ABC 5.91E+00 5.58E+00 5.58E+00 1.04E+00 0 1 7.60E+09
DSB 7.20E+00 7.98E+00 3.69E+00 1.32E+00 0 0 0.00E+00

12 GWO 2.08E+03 1.88E+01 1.88E+01 6.72E+03 0 1 1.19E+10
PSO 2.23E+03 2.73E+02 2.09E+01 5.03E+03 0 1 1.46E+10
ABC 1.91E+03 3.05E+02 3.34E+01 4.77E+03 0 1 1.47E+10
DSB 6.21E+01 1.27E+01 1.27E+01 2.51E+03 0 0 0.00E+00

13 GWO 1.30E+00 9.28E−01 7.43E−01 6.33E−01 0 1 1.06E+10
PSO 2.81E+00 2.23E+00 1.12E+00 1.17E+00 0 1 1.42E+10
ABC 3.50E+00 2.82E+00 1.25E+00 1.44E+00 0 1 1.43E+10
DSB 1.41E+00 7.43E−01 5.95E−01 2.34E+00 0 0 0.00E+00

14 GWO 3.01E+00 3.00E+00 2.99E+00 7.49E−02 0 1 1.33E+10
PSO 3.07E+00 3.06E+00 3.02E+00 1.17E−01 0 1 1.35E+10
ABC 3.55E+00 3.53E+00 3.53E+00 7.31E−02 0 1 1.47E+10
DSB 2.73E+00 2.58E+00 2.57E+00 3.34E−01 0 0 0.00E+00

15 GWO 1.77E+02 1.31E+02 1.01E+02 9.72E+01 0 1 1.16E+10
PSO 2.24E+02 1.41E+02 1.24E+02 1.24E+02 0 1 1.31E+10
ABC 2.27E+02 2.00E+02 2.00E+02 8.38E+01 0 1 1.43E+10
DSB 1.23E+02 1.14E+02 6.08E+01 5.92E+01 0 0 0.00E+00

though certain functions may seem to produce similar results,
the advantage is quite apparent: DSB still performs better than
GWO, PSO and ABC in functions 1, 2, 3, 4, 5, 16, 17, 21, 24
and 25 respectively. In functions 8, 10, 11 and 19 even though
DSB convergence rate is slower, nevertheless DSB algorithm

still managed to produce the best results before hitting the
termination criteria.

∙ In the first group of benchmark functions 𝑓1−𝑓5, DSB has proved
to the best performing algorithm in comparison to GWO, PSO
and ABC respectively. Even though from Fig. 4, it may seem
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Table 4
Rotated Multimodal Simulation Results for 10-D problems.

Func Algorithm Mean Median Best Std 𝑝 ℎ stats.ranksum

16 GWO 1.52E+02 1.52E+02 1.21E+02 3.75E+01 0 1 1.24E+10
PSO 1.36E+02 1.21E+02 1.21E+02 3.25E+01 0 1 1.12E+10
ABC 1.30E+02 1.31E+02 1.26E+02 1.19E+01 0 1 1.05E+10
DSB 1.26E+02 1.21E+02 9.71E+01 2.77E+01 0 0 0.00E+00

17 GWO 1.46E+02 1.22E+02 1.22E+02 4.46E+01 2.12E−273 1 9.54E+09
PSO 1.54E+02 1.62E+02 1.40E+02 2.04E+01 5.59E−99 1 1.03E+10
ABC 2.41E+02 2.55E+02 2.00E+02 2.40E+01 0 1 1.43E+10
DSB 1.56E+02 1.42E+02 1.16E+02 4.42E+01 0 0 0.00E+00

18 GWO 8.19E+02 8.03E+02 8.01E+02 4.86E+01 0 1 1.40E+10
PSO 8.26E+02 8.23E+02 8.23E+02 1.76E+01 0 1 1.40E+10
ABC 8.75E+02 8.73E+02 8.56E+02 1.75E+01 0 1 1.41E+10
DSB 4.55E+02 3.59E+02 3.03E+02 2.07E+02 0 0 0.00E+00

19 GWO 4.25E+02 3.32E+02 3.01E+02 1.93E+02 0 1 8.29E+09
PSO 4.44E+02 4.05E+02 4.01E+02 6.17E+01 0.016713429 1 1.00E+10
ABC 8.28E+02 8.03E+02 8.01E+02 5.90E+01 0 1 1.50E+10
DSB 4.58E+02 4.63E+02 3.00E+02 1.14E+02 0 0 0.00E+00

20 GWO 8.25E+02 8.04E+02 8.01E+02 5.77E+01 0 1 1.50E+10
PSO 8.25E+02 8.22E+02 8.22E+02 1.22E+01 0 1 1.50E+10
ABC 9.49E+02 9.53E+02 9.18E+02 1.94E+01 0 1 1.50E+10
DSB 4.69E+02 4.73E+02 4.54E+02 2.96E+01 0 0 0.00E+00

Table 5
Hybrid Multimodal Simulation Results for 10-D problems

Func Algorithm Mean Median Best Std 𝑝 ℎ stats.ranksum

21 GWO 5.54E+02 5.11E+02 5.01E+02 1.01E+02 0 1 1.05E+10
PSO 1.10E+03 1.09E+03 1.09E+03 1.19E+01 0 1 1.48E+10
ABC 1.22E+03 1.22E+03 1.21E+03 1.06E+01 0 1 1.49E+10
DSB 5.52E+02 5.07E+02 5.00E+02 1.26E+02 0 0 0.00E+00

22 GWO 4.04E+02 3.23E+02 3.02E+02 1.71E+02 0 1 1.39E+10
PSO 4.26E+02 3.45E+02 3.03E+02 1.70E+02 0 1 1.39E+10
ABC 8.14E+02 8.13E+02 7.94E+02 2.55E+01 0 1 1.46E+10
DSB 3.61E+02 3.02E+02 3.02E+02 1.62E+02 0 0 0.00E+00

23 GWO 7.76E+02 7.21E+02 7.21E+02 1.36E+02 0 1 1.44E+10
PSO 1.10E+03 1.09E+03 1.09E+03 1.51E+01 0 1 1.49E+10
ABC 1.24E+03 1.24E+03 1.24E+03 4.40E+00 0 1 1.49E+10
DSB 5.96E+02 5.59E+02 5.59E+02 1.09E+02 0 0 0.00E+00

24 GWO 2.66E+02 2.15E+02 2.00E+02 1.23E+02 0 1 1.06E+10
PSO 3.72E+02 3.68E+02 3.66E+02 1.02E+01 0 1 1.40E+10
ABC 5.49E+02 5.45E+02 5.00E+02 4.23E+01 0 1 1.43E+10
DSB 2.58E+02 2.06E+02 2.00E+02 1.43E+02 0 0 0.00E+00

25 GWO 1.75E+03 1.74E+03 1.74E+03 1.16E+01 0 1 1.32E+10
PSO 1.81E+03 1.80E+03 1.76E+03 4.90E+01 0 1 1.50E+10
ABC 1.81E+03 1.78E+03 1.77E+03 3.82E+01 0 1 1.50E+10
DSB 1.74E+03 1.73E+03 1.73E+03 8.27E+00 0 0 0.00E+00

that all the compared algorithms have the achieved the same
performance in 𝑓1−𝑓3, a close inspection in Table 2 would clearly
indicate that DSB has outperformed the other algorithms. The
results indicate that DSB has a slightly better convergence speed
in solving unimodal optimization problem in comparison with
GWO, PSO and ABC. As mentioned before, unimodal functions
are suitable for benchmarking exploitation. The slightly better re-
sults indicate that the exploitation operator discussed previously
managed to steer the population towards the optimum faster
guided by the weighted mean of the population.

∙ Even when it comes to solving Group II multimodal optimization
problems, DSB has exhibited superior performance in compar-
ison with other algorithms. Multimodal functions have many
local optima and makes them suitable for benchmarking the
exploration ability of an algorithm. Even though the convergence
speed of DSB in 𝑓7 − 𝑓11 and 𝑓14 is not as fast as the other
algorithms, DSB still managed to obtain the best minimum
result. It should be noted that DSB operators perform both the
exploration and exploitation simultaneously during the optimiza-
tion process. Exploitation leads to faster convergence but the
exploration obstructs the movements of individual into smaller
region of the search space hence affecting the convergence

speed. This is because exploration operators are applied to
every individuals whereas exploitation operators are applied to
weaker individuals. In other words, the DSB algorithm is slightly
tweaked to exhibit the exploration nature more compared to the
exploitation nature. Nevertheless, the result indicates that DSB
managed to strike the required balance between exploitation and
exploration to tackle multimodal functions. In 𝑓6, 𝑓12 𝑎𝑛𝑑 𝑓13,
the performance of DSB is equally comparable with the other
algorithms in terms of exploration capabilities.

∙ DSB is very competitive in hybrid rotated multimodal func-
tions. These hybrid functions are suitable to benchmark both
exploration and exploitation functions respectively, especially
to evaluate the ability of an algorithm to avoid local minima.
The convergence plot clearly displays the benefit of having a
searching process with combined exploration and exploitation
operator. Take 𝑓18, 𝑓20 𝑎𝑛𝑑 𝑓23 for an example. DSB managed
to escape from the local optima and achieved superior result
by the end of searching whereas the other algorithms are
trapped in the local optima within the searching process. The
exploration operators which employs attraction, repulsion and
random movements allows a better individual distribution in
the search space which increases the ability of DSB to find
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global optima. The coordination of the movements are based on
incorporated recruitment signals which holds the attraction and
repulsion vector over the local best individual and the global best
individual seen so far. This scheme had certainly allowed the
individuals to explore their own neighborhood before converging
towards the global optimum.

Interestingly, the No-Free Lunch (NFL) Theorem (Wolpert and
Macready, 1997) mentions that it is theoretically impossible to have
a single best universal optimization solver as all the meta-heuristic
algorithms perform exactly the same when all possible evaluated bench-
mark functions are averaged. However, this creates endless possibility to
develop new algorithms as the total number of possible problems is too
huge. Hence, it is always worthwhile to venture into new methodologies
with superior performance. This is the motivation to propose DSB as a
global numerical optimization problem solver.

5.2. Optimization of hyper beamforming radiation pattern

This section discusses the experimental results for various opti-
mized hyperbeam antenna array designs obtained by GWO, PSO, ABC
and DSB optimization algorithms. Three sets of linear antenna array
configurations are chosen for each one of the algorithm to optimize
the nonuniform current excitation weights, optimal uniform inter-
element spacing and beam-width control coefficient. Fig. 5 displays the
optimized nonuniform excitations and optimized fixed inter-element
spacing radiation patterns of linear antenna arrays for sets of 10, 14,
and 20 number of elements with the exponent values, 𝜇 = 0.5 and
𝜇 = 1 respectively, as obtained by the algorithms. From Fig. 5, it is
obvious that optimized hyper beam produces an enhanced SLL and
FNBW compared to conventional hyper beam. Tables 6 and 7 lists
the optimal current excitation weights, beam-width control coefficient,
optimized uniform inter-element spacing (𝜆 ∈ [𝜆∕2, 𝜆]), SLL and FNBW
with hyperbeam exponent value, 𝜇 = 0.5 and 𝜇 = 1 respectively, using
GWO, PSO, ABC and DSB.

The following observations can be made from Fig. 5, Tables 6 and 7
in which the exponent values are 𝜇 = 0.5 and 𝜇 = 1 respectively. Overall,
DSB managed to yield the lowest SLL which is obviously noticeable and
produce a considerably narrow beam width compared to PSO, ABC and
GWO. The performance of PSO, ABC and GWO are almost on par with
GWO topping the list but DSB had out performed the benchmarked
algorithms with a remarkable feat. This testifies that the exploration
and exploitation operators employed by DSB not only managed to
solve linear problems but non-linear problems such as hyper beam
optimization. While DSB produced the lowest SLL in all scenarios, the
FNBW for 10-element antenna array for both exponent values, 𝜇 = 0.5
and 𝜇 = 1 were not the best. A slight trade off to achieve lower SLL.
Nevertheless, the FNBW were at optimal level for 14 and 20-element
antenna arrays. Another observation from the tabulated data is that the
radiation patterns with 𝜇 = 0.5 produces lower SLL and narrower FNBW
compared to radiation patterns with 𝜇 = 1. Hence, the exponent value,
𝜇 = 0.5 would be ideal for achieving a narrower FNBW with low SLL for
any future research reference.

5.3. Discussion about the DSB algorithm

Even though DSB algorithm falls under the category of swarm
intelligence algorithm, there are several differences that distinguishes
DSB from PSO, ABC and GWO. Similar to DSB, all those algorithms
were also inspired by collective social behavior of animals and were
initially developed to solve continuous optimization problems. The first
difference is the individual movements in the search space. In PSO, the
movement of each particle is driven towards the global best position
and also towards their own personal best positions. In ABC, there is
no mechanism to use the global information in the search space, so the
individual bee’s movements easily results in a waste of computing power

and gets trapped in local optima as the mechanism only encourages
local interaction. Similarly, GWO also updates the positions of its search
agents based on the locations of local neighboring wolves which highly
encourages exploration and encounters the issue as ABC algorithm.
Whereas in DSB, the members perform positional shift based on their
own historical positions (local memory), their neighboring members’
current positions and the global best position. These patterns lead to a
better searching behaviors due to the fact that the individual current
positions and the global best position differs greatly during most of
the iteration process. Therefore, this type of search patterns can be
more efficient in solving multi-modal optimization problems with a
large number of local minima. Another point to note is that DSB is not
sensitive to parameter tuning as all the members are simultaneously
governed by the exploration and exploitation operators. This means that
there is no need to define the parameter values to control the extend of
exploration and exploitation affects the optimization process. On the
contrary, PSO and GWO requires careful parameters tuning to ensure a
smooth transition between exploration and exploitation otherwise the
search results may not lead to the optimal result. The intricate behavior
of the agents in PSO and GWO is found to be dependent on the settings
of the different algorithm parameters. Thus, the interdependence of
the different parameters makes these algorithms sensitive to proper
parameter tuning as one set of parameters may not be the best fit for
all problems to guarantee optimum results.

Subsequently, the next difference lies in their optimization design
metaphor. The PSO was inspired by the principles of how animal groups
such as flocks of birds or schools of fishes coordinate their motions. ABC
adopts the food foraging model of bees in a colony whereas GWO utilizes
Producer–Scrounger (PS) model where the individuals are divided into
leaders and followers. On the other hand, DSB utilizes communal social
behavior as its design metaphor which means that individuals perform
search operation while communicating with other individuals to look for
better solution potentials. One of the most prominent difference between
DSB and other proposed algorithms is that DSB employs Information
Sharing (IS) model into all its search agents to enhance the general
social animal searching behavior. IS model is also present in ABC and
GWO but limited to certain groups of individuals only which means that
crucial piece of information could be lost leading to sub-optimal search
performance.

Another obvious difference between the conventional PSO, ABC and
GWO algorithms and DSB is in the method of information transfer. In the
conventional PSO algorithm, the method of information transfer is not
applied and it is assumed that all the particles are aware of the system
information without loss. Nevertheless, in recent times several variant
of PSO, conventional ABC and GWO have considered the validity of
information but not on the information loss characteristics. The unique
feature of DSB is that the information transfer method is modeled
through the acoustic based recruitment signal which considers a generic
knowledge system with information loss. Up to date, there is still no
research on the impact of information loss with regards to optimization
technique based on social behavior strategy. Hence, this opens up new
opportunity for exploration in the near future.

Knowledge sharing is another feature which differentiates PSO, ABC,
GWO and DSB. In DSB, every member generates new information and
transmits the information to the whole population whereas in PSO, ABC
and GWO, the algorithm does not contain the shared information of
the entire population. The common information is focused on the best
particle in the system in the case of PSO and local best individuals in
the case of ABC and GWO. In DSB, the information transfer is derived
from the current position of individuals, neighboring individuals and the
best individual position instead of purely relying on the best historical
positions unlike PSO or best neighboring positions unlike ABC and GWO,
and this varies the searching process of DSB.

Finally, even though DSB, ABC and GWO are all inspired by the
social animal foraging strategy, there are some obvious differences. In
ABC and GWO, the populations are divided into several groups that
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Fig. 5. Comparison of optimized array pattern for 10, 14 and 20-element array with 𝑢 = 0.5 and 1 respectively with improved SLL.

Table 6
SLL, FNBW, optimal current excitation weights and optimal inter-element spacing for hyper beam pattern of linear array with hyper beam exponent (𝑢 = 0.5), obtained by PSO, ABC,
GWO and DSB for different sets of arrays.

𝑁 Algorithms Optimized current excitation weights
[

𝐼1 , 𝐼2 , 𝐼3 ,… , 𝐼𝑁
]

Beam width control
coefficient

Optimal inter-element
spacing (𝜆)

SLL of hyper beam with
optimization (dB)

FNBW of hyper beam
with optimization (deg)

10

PSO 0.2219 0.5435 0.9516 0.9032 0.6932 0.8690 0.9768 −140 20.121.5105 0.7287 0.2529 0.7488 0.3500

ABC 0.1773 0.5184 1.0292 1.0589 1.0654 0.9600 0.8259 −112.3 20.81.0576 0.7828 0.4202 0.5760 0.3943

GWO 0.1028 0.3814 0.6264 0.9474 0.8024 0.9700 0.8455 −166.7 26.081.0425 0.5369 0.5555 0.2123 0.2135

DSB 0.1790 0.3917 0.3183 0.6822 0.9713 0.8425 0.9230 −225.7 27.760.9858 0.9874 0.9030 0.3707 0.1317

14

PSO
0.3658 0.2561 0.4931 0.0043 0.6128

0.7134 0.5947 −100.8 25.040.5837 0.8801 0.5165 0.5880 0.6064
0.7424 0.5612 0.2889 0.3275

ABC
0.2236 0.1858 0.6027 0.5261 0.8026

0.6800 0.6161 −128.9 26.540.4233 0.6275 0.7401 0.9499 0.2960
0.2525 0.2800 0.5037 0.3656

GWO
0.2297 0.3706 0.3107 0.2272 0.6682

1.0006 0.7953 −127.4 15.880.9515 0.6941 0.8598 0.4166 0.7559
0.7312 0.2396 0.3754 0.0982

DSB
0.1301 0.3198 0.4095 0.2993 0.5739

0.7003 0.9892 −212.8 22.780.9710 0.9424 0.9167 0.7404 0.8678
0.7414 0.3445 0.2248 0.0591

20

PSO

0.3201 0.4118 0.4894 0.4673 0.3027

0.6383 0.5381 −91.24 21.480.6716 0.3586 0.9886 0.6950 0.9040
0.5547 0.9970 0.4059 0.7208 1.0449
0.1579 0.8253 0.3337 0.0020 0.5574

ABC

0.1675 0.2460 0.2113 0.5307 0.6119

0.7000 0.5353 −95.8 18.920.5740 0.7962 0.2236 0.8399 0.2515
1.0186 0.3767 0.8215 0.1836 0.2281
0.1792 0.4317 0.6579 0.2191 0.3467

GWO

0.1585 0.1384 0.5700 0.4827 0.9529

0.7056 0.5989 −115.6 18.160.7749 0.9684 0.7941 0.6995 0.6093
1.0250 0.9416 0.4721 0.4252 0.2891
0.3321 0.4208 0.4571 0.4279 0.3235

DSB

0.0006 0.0001 0.0062 0.2111 0.3791

0.7001 0.9549 −172.6 16.820.5922 0.7999 0.8638 0.8769 0.9311
0.9476 0.9212 0.7571 0.5878 0.5321
0.4865 0.3985 0.3611 0.1815 0.0609

perform specific tasks while collectively searching the search space.
However in DSB, all members equally perform all the tasks that would be
executed by multiple types of populations in the other two algorithms.
Therefore, the uniform structure of the population in DSB with multiple

execution tasks may enhance the searching process in many multimodal
optimization problems. In a nutshell, the underlying social behavior
strategy coupled with IS foraging model leads to the unique searching
pattern and enhanced performance of DSB over other algorithms.
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Table 7
SLL, FNBW, optimal current excitation weights and optimal inter-element spacing for hyper beam pattern of linear array with hyper beam exponent (𝑢 = 1), obtained by PSO, ABC, GWO
and DSB for different sets of arrays.

𝑁 Algorithms Optimized current excitation weights
[

𝐼1 , 𝐼2 , 𝐼3 ,… , 𝐼𝑁
]

Beam width control
coefficient

Optimal inter-element
spacing (𝜆)

SLL of hyper beam with
optimization (dB)

FNBW of hyper beam
with optimization (deg)

10

PSO 0.1460 0.1010 0.4741 0.4133 0.6267 1.0558 0.7059 −58.66 25.040.6457 0.7009 0.4038 0.3935 0.2140

ABC 0.3811 0.4379 0.2107 0.7478 0.8039 0.9865 0.6749 −59.11 24.120.4424 0.3736 0.5041 0.1774 0.1603

GWO 0.2606 0.5162 1.0342 0.9984 1.0340 0.7301 1.0454 −76.15 31.240.9947 0.6257 0.0164 0.0724 0.0343

DSB 0.1090 0.3320 0.8501 0.9670 0.9875 0.9817 0.7364 −112.6 30.220.9790 0.7005 0.3502 0.3917 0.1729

14

PSO
0.0415 0.4310 0.6027 0.8172 0.8079

0.7264 0.6426 −55.81 28.080.8317 0.4347 1.1156 0.2403 0.3684
0.4689 0.0313 0.6110 0.1934

ABC
0.1003 0.2575 0.3051 0.5360 0.6398

0.7008 0.6728 −52.75 24.920.7006 0.5262 0.8292 0.3861 0.4833
0.3820 0.4812 0.1342 0.3375

GWO
0.1808 0.4093 0.3065 0.3611 0.5661

0.7008 0.7419 −62.18 24.060.8375 0.6791 0.7061 0.4670 0.6386
0.5091 0.3592 0.0831 0.1959

DSB
0.1091 0.3043 0.4322 0.3514 0.5521

0.7000 0.9919 −109.3 22.780.9394 0.9737 0.9810 0.8525 0.9474
0.7552 0.3591 0.1935 0.0481

20

PSO

0.2739 0.0772 0.4660 0.3213 0.4341

0.7215 0.5624 −47.81 18.620.6219 0.6238 0.8594 0.4543 0.7166
0.6867 0.9221 0.3948 0.5011 0.4219
0.6935 0.3145 0.3454 0.1700 0.4868

ABC

0.5928 0.0927 0.4036 0.0208 0.6520

0.7029 0.6014 −54.1 17.980.1704 0.7801 0.0025 0.8693 0.8679
0.6607 0.7677 0.9863 1.0091 0.7817
0.9002 0.5228 0.7505 0.2867 0.2434

GWO

0.0947 0.1492 0.2643 0.5640 0.6044

0.7000 0.6599 −63.6 17.80.8503 0.8923 0.7102 0.6176 0.7435
0.8187 0.9004 0.7045 0.3612 0.2097
0.3706 0.3647 0.5066 0.3815 0.1691

DSB

0.1272 0.2162 0.4029 0.4432 0.5117

0.4501 0.9636 −89.02 18.080.5840 0.6999 0.9549 0.8148 0.9630
0.9240 0.9804 0.6897 0.6667 0.5921
0.3478 0.1447 0.0000 0.0004 0.0001

6. Conclusions

This work proposes a novel Dynamic Social Behavior based on social
communal interaction rules to solve global optimization problems.
The social communal interaction rules are integrated with information
transfer strategy (recruitment signal) which resembles collective social
behavior. The DSB algorithm has a relatively simple structure and does
not require more than one parameter setting which makes it easier to
implement.

A set of 25 benchmark functions were employed to evaluate the per-
formance of the proposed algorithm in terms of convergence rate, local
optima avoidance, exploration and exploitation. The simulation results
and the tabulated data showed that DSB was able to provide highly
competitive results compared to popular algorithms such as GWO, PSO
and ABC in all the four different groups of functions. Furthermore, the
proposed algorithm was evaluated by solving a real engineering problem
on hyper beamforming optimization. The experimental results reveal
that DSB produces optimal designs, providing the best reduction in SLL
and improved FNBW as compared to other benchmark algorithms.

The remarkable performance of DSB is contributed by several factors
such as the search operator factor and the population division factor.
The search operator ensures that the population gets a better distribu-
tion in the search space, thus increasing the probability to locate the
global optima or in other words, increase its exploration capability. On
the other hand, the population division divides the population into two
individual types and employs the median search approach to enhance
the exploitation ability during the optimization process.

For future work, DSB will be evaluated for CEC 2006 real world
test problems to verify its efficiency in solving other challenging search
spaces.
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