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 Existing power systems are significantly susceptible to voltage instability 

problem since such systems are stressed with the huge power transfers across 

the grids. To guarantee power system stability during stressed conditions, it 

is important to first identify the voltage unstable load buses to determine 

appropriate locations for under voltage load shedding. In this study, a new 

method is proposed for determining weak load bus locations by using 

reactive power tracing to develop a novel reactive power tracing capable 

index, named as LQP_LT. The reactive power tracing algorithm is integrated 

with the LQP_LT index formulation to generate priority ranking list of weak 

load buses. The LQP_LT index was tested on the 57 bus system and the 

resulting priority ranking list is found to have successfully determined the 

weak load buses for load shedding in the test system. Comparison with other 

stability indices revealed that the LQP_LT has better sensitivity and response 

towards determining the location of the weakest load bus for under voltage 

load shedding implementation. 
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1. INTRODUCTION  

Voltage instability has been regarded as one of the major cause of power system insecurity. A 

voltage instability phenomenon takes place when the receiving end voltage decreases well below its normal 

operating point [1]. The voltage decline in voltage instability framework occurs when the combined 

generation and transmission system is unable to provide or meet the power demanded by the loads.  

The imbalance between the generation power and demand power can be due to system outage or limitations 

in reactive power sources or a combination of both. To prevent power system from wide-spread voltage 

collapse situation, usually load shedding is applied as the final safety measure in the mitigation plan.  

Rapid under voltage load shedding at the voltage unstable locations has been found to be economical and 

effective in preventing the system voltage from declining rapidly. Therefore, identifying the voltage unstable 

areas in a power system is crucial before implementing under voltage load shedding. 

Several methods have been developed to identify the voltage unstable locations in which the recent 

methods are based on sensitivity analysis and voltage stability index calculation [2]. Sensitivity analysis can 

be classified into P-V and V-Q analyses. Due to the nonlinear nature of power system operation,  

the magnitude of the sensitivities for different system conditions does not provide a direct measure of the 

relative degree of voltage stability. The sensitivity method is considered time-consuming because it requires 

repetitive power flow solutions and therefore incurs high computational time when solving large networks. 
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Another method for identifying voltage unstable locations is by identifying critical lines or critical buses 

using proximity indicators based on voltage stability index. Many voltage stability indices (VSI) have been 

developed and can be categorised as bus indices, system indices and line indices [3]. Bus voltage stability 

indices determine voltage stability of system buses but do not provide any information about the behaviour of 

the lines, loads or generators which may cause voltage instability in the system. The system VSIs categorized 

here are not related to the system buses or lines because these indices are not able to determine the weakest 

bus or line but can only predict the system collapse point [4]. Many line VSIs have been formulated based on 

the representation of a transmission line in which the discriminant of the voltage quadratic equation for most 

of the lines is set to be equal or greater than zero, to achieve voltage stability. Some examples of the line 

VSIs that have been developed are the Line Stability Index (L_mn), fast Volatge Stability Index (FVSI) and 

the New Voltage Stability Index (NVSI) [5]-[7]. 

All the VSIs have their advantages and disadvantages and therefore it is not practical to recommend 

an index as the only one to use. Some indices are suited for on-line studies because of low computational 

time but these indices tend to be poor predictors of proximity to voltage collapse. On the other hand,  

some indices give accurate measure of distance to voltage collapse but require high computational time and 

making them unsuitable for online studies [3]. It is important to note that all the above-mentioned indices 

have neglected the effect of shunt admittances and reactive power in its computation to predict voltage 

instability [8]. The application of the indices for determining the voltage unstable locations is also not 

considered due to lack of information on reactive power tracing.  Reactive power flow is required to maintain 

the voltage to deliver active power through transmission lines. Due to the restructuring of power system 

operation from regulated to deregulated market, there is a need to provide the service of reactive power 

support not only for transmission system pricing but also for voltage stability control. In view of more 

complex and practical power systems, it is important to evaluate the reactive power flow in every 

transmission line and determine its contribution to voltage stability in a power system. Hence, to develop an 

accurate voltage collapse indicator for determining the voltage unstable locations, the power flow tracing 

principle developed by Bialek and improvised power flow tracing method by Niu et al. is applied by 

considering reactive power flow in this research work [9]-[10]. 

This paper describes the development of a new stability index that incorporates reactive power 

tracing computation in the index for determining the weak locations from the voltage instability point of 

view. The proposed reactive power tracing method does not alter the network size and it can trace the 

reactive power flow contributed by load buses in a transmission system. The proposed reactive power tracing 

index LQP_LT is then compared with the other line VSIs such as the Lmn, FVSI and NVSI [5]-[7]. 

 

 

2. DERIVATION OF REACTIVE POWER TRACKING INDEX LQP_LT 

Load tracing is a task for determining the extraction of power by loads and is the key principle 

behind the derivation of the reactive power tracing index. Load tracing determines how much line flow and 

generated power are consumed by a load [11]-[12]. Tracing the power consumption by any load in a system 

can provide a good indication on the priority of load to be shed first during a contingency. The section 

describes the development of the proposed reactive power tracing index, LQP_LT for determining the weak 

load buses for load shedding purpose. The LQP_LT index is derived from the line stability factor,  

LQP developed by Mohamed et al [13]. Using the concept of reducing a radial network into a single line 

equivalent circuit, the power flow in a transmission line of a two bus system is considered as shown in  

Figure 1 [14]. 

 
 

 
 

Figure 1. Single line diagram of a two-bus system 

 

 

By taking node i as the reference node and letting    be the the reactive power entering node j,  

the following equation is derived [13].  
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Rearranging (2), 
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Expressing (3) into the quadratic form and solving for Qi, 
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Thus, for real roots of    , the following equation must be satisfied. 
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The condition in (5) will lead to imaginary roots of    if it is not satisfied. From (5), it can also be 

observed that the sending end voltage,    has to be zero in order for the reactive power,    to become a real 

quantity. Therefore, at this point when the sending end voltage,    become zero and the condition in (5) is not 

satisfied, it implies that voltage collapse scenario have already occured. From (5), the LQP index is derived 

and expressed as [13], 
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The LQP index has a value between 0 to 1.0 and that if the value of LQP index is close to 1.0, it 

indicates proximity to voltage collapse. 

Since reactive power flow plays a crucial role in maintaining a voltage within a stable region, it is 

important to trace the reactive power flow in a line that will be consumed by a load. The significance of 

tracing reactive power flow in every line due to load will in fact indicate which load buses in the system that 

causes highest congestion level to a transmission line. With this concept, tracing the LQP index contributed 

by a certain load in a system can be derived. Equation (4) has shown that reactive power can be traced in a 

line as a summation of individual load components by identifying the power fraction contribution. Applying 

(4) and (5) for reactive power tracing, into (6) for line l-m as summation of individual load components,  

the Reactive Power Tracing Index, LQP_LT is derived. The following sections show the detailed steps to 

derive LQP_LT index. 

To successfully obtain the traced LQP_LT index, the receiving end reactive power fraction,    
  

extracted by i-th load in line l - m need to be quantified. To perform this, the downstream looking algorithm 

which considers the nodal balance outflows is implemented. Applying this concept by Bialek, the total nodal 

reactive power,    is expressed as [9], 
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where   
   

 is the set of nodes supplied directly from node 𝑖. 

Thus, the reactive power flowing out from node  𝑖 in the relevant lines    , is noted as     . On the other 

hand,     is the reactive load at node 𝑖,        is the receiving end reactive power extracted by reactive 

power faction    
   

|      |
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or as multiplication of downstream distribution admittance matrix [9], 
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where    is the (       downstream distribution matrix,   is the vector of nodal through reactive power 

flows and     is the vector of nodal reactive demands. The (    ) element of downstream distribution 

matrix,     is equal to, 
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From (10), if     exists, then   =   
     and its n-th element can be written as: 
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Equation (11) shows how the nodal reactive power,    is distributed between all the loads in the 

system. Bialek has shown that the same nodal reactive power,    is equal to the sum of the load demand at 

node i and all the outflows in lines leaving the node [9]. Hence, the reactive power outflow in line     

from node i can be calculated using the proportional sharing principle shown as, 
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From here, the traced reactive power allocation to each line due a particular load component is implemented 

into the LQP index and named as    𝑃     .   𝑃      can now be written as: 
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Expanding (13) to incorporate the traced reactive power tracing contributed by load components in individual 

line      , the following is derived. 
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Finally, the total traced LQP_LT of line l - m due to the i-th load of reactive power,     is generalised and 

written as follows, 
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where, 

   : number of loads or reactive power sinks in the system 

   
   : receiving end reactive power contributed by the i-th load or reactive sink in line l - m  

   
  : receiving end reactive power fraction in line l – m  

  :  line reactance  

   :  sending end voltage in p.u. 

𝑃  : sending end real power 

and        
       

       

 

 

3. REACTIVE POWER TRACING ALGORITHM 

A reactive power tracing algorithm is developed in MATLAB to calculate the proposed reactive 

power tracing index, LQP_LT and ranking the index for identifying the weak lines in a power system.  

The overall implementation steps of the reactive power tracing algorithm are described as follows: 
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Step 1: Input data of the test power system.  

Step 2: Obtain the base case power flow solution for the power system using the MATLAB based 

MATPOWER load flow program.  

Step 3: Apply a disturbance event, such as single line outage, double line outage with and without load 

increase in the system. 

Step 4: Calculate new reactive power in each line at both sending and receiving end buses due to reactive 

power generated by shunt admittance,        connected to each bus. Equations (16) and (17) are used to 

obtain the new reactive power injections considering the shunt admittances. 

 
 

 
 

Figure 2. Implementation steps of LQP_LT index computation 

 

 

                                  (16) 
 

                                        (17) 

 

Step 5: Complete the π model network by considering the following calculations. The network is now 

considered as lossless since the shunt admittances has been attributed to sending end buses as shown in  

Step 4.  

a) Calculate the reactive power generation at each bus that is equal to total generated power and 

attributed shunt admittances.  

 

Input test power system data 

Start 

Apply a disturbance event  

Run base case power flow using the 

MATPOWER 

Develop π model transmission for system study by calculating new reactive power considering 

reactive power generated by shunt admittance  

Form the lossless network: a) Calculate the reactive power generation at each bus using (18), 

b) Calculate the reactive power at each load bus using (19), c) Calculate the total nodal 

through-reactive power at each bus using (20) and (21) 

Calculate the downstream distribution matrix,     

Compute LQP_LT index for all lines in the system with respect to load 

contribution using (14) and (15) 

Rank the  LQP_LT values in descending order  

End 

Calculate   
    

Calculate reactive power contribution in each load via proportional sharing   
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                           (18) 

 

b) Calculate the reactive power at each load bus that is equal to total reactive load and attributed shunt 

admittances. 

 

                             (19) 

 

c) Calculate the total nodal through-reactive power at each bus, i. 

 

                                  (20) 

 

                                (21) 

 

Step 6: Form the downstream distribution matrix,    by using the downstream looking algorithm as 

described by (9) to (12).  

Step 7: Calculate the inverse of downstream distribution matrix,   
  . 

Step 8: Calculate the reactive power contribution in each line as given in (12).  

Step 9: Calculate the LQP_LT index for all lines in the system using (14) and (15).   

Step 10: Rank the LQP_LT index values in descending order. 

The implementation steps of the reactive power tracing algorithm and the LQP_LT index calculation 

for every transmission line in a power system is also described in terms of a flow chart as shown in Figure 2. 

 

 

4. TEST RESULTS 

To evaluate the effectiveness and the accuracy of the proposed reactive power tracing index, 

LQP_LT in determining the weak buses in a power system, it is compared with other other voltage stability 

indices, namely, FVSI, Lmn and NVSI [5]-[7]. Similar contingency scenarios for the single line and double 

contingency are simulated on the IEEE 57 bus test system using the MATPOWER power flow analysis 

program. From the MATPOWER power flow results, the LQP_LT index values are computed for all the 

buses in the selected contingency scenario and contingency ranking is performed. The voltage stability 

indices, FVSI, Lmn and NVSI are also computed and ranking results from these indices are obtained.  

The ranking results obtained from the LQP_LT index and the other voltage stability indices are then analyzed 

and compared. The following sections describe the formulation of voltage stability indices, FVSI, Lmn and 

NVSI. The line stability index, known as Lmn is expressed as [5], 

 

     
    

[|  |        ] 
        (22) 

 

where X is the line reactance, Qr is the reactive power at the receiving end, Vs is the sending end voltage,  is 

line impedance angle and  is the angle difference between the supply voltage and the receiving voltage.  

Lmn is used for predicting voltage instability such that if Lmn is less than 1.00, the power system is 

considered stable, otherwise the system is unstable. The FVSI is expressed as [6], 

 

      
     

  
  

         (23) 

 

where Z is the line impedance, X is the line reactance, Qr is the reactive power flow at the receiving end and 

Vs is the sending end voltage. The line that gives index value close to 1.00 will be the most critical line and 

may lead to system wide voltage instability. The NVSI [7] is expressed as, 

 

      
  √   

    
  

       
         (24) 

 

where X is the line reactance, Qr is the reactive power flow at the receiving end and Vi is the sending end 

voltage. For NVSI value less than 1.00, the system is considered to be in voltage stable condition. To test the 

effectiveness and performance of the LQP_LT index on the test systems, two load conditions have been 

considered; base case and heavily loaded conditions. The results of the LQP_LT index for identifying the 

weak load buses and weak lines are presented in the following sections. 
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4.1.  LQP_LT Index Computation for Base Case Condition 

Table 1 shows the first five highest ∑   𝑃        index values obtained for the IEEE 57 bus 

system. The five buses with high ∑   𝑃        index values for the 57 bus system are bus 31 followed by 

bus 18, bus 42, bus 25 and bus 53. Close monitoring would be needed at these weak or voltage unstable 

buses as further increase in load demand may cause insufficient reactive power to maintain the bus voltage 

close to its nominal value. 

 

 

Table 1. Five Highest LQP_LT Index Values at the Load Buses in the IEEE 57 bus System for  

Base Case Condition 
Load bus  31 18 42 25 53 

∑   𝑃   
    

 0.8264 0.7920 0.7853 0.7689 
 

0.7365 

 

 

 

The capability of the LQP_LT index is not restricted in tracing weak load buses only, but it can also 

trace and rank the weak lines affected by those load buses. Table 2 shows the five highest LQP_LT 

index, ∑   𝑃        , traced for the lines in the IEEE 57 bus system. It is important to note that the 

summation of the LQP_LT values computed for each line, ∑   𝑃        , in the system consist of 

individually traced,   𝑃             contributed by the load buses connected to the line. Thus, the 

∑   𝑃         index value computed for each line is possible to exceed 1.0. From Table 2, it was found that 

the results of the ∑   𝑃         for the base case in the IEEE 57 bus system indicate that line connecting 

from bus 24 to bus 25 has the highest congestion level and need close monitoring for any increase in the load 

demand. Evaluation from the base case analysis have demonstrated that tracing the reactive power fraction 

contribution by the load buses to the transmission lines using ∑   𝑃         index formulation and ranking 

system, would enable the system operator to identify the exact location of weak lines that exert high reactive 

power flow in the lines. Thus, any corrective or preventive action to maintain system stability can be 

executed effectively and accurately. 

 

 

Table 2. Five highest ∑   𝑃         values for the base case of IEEE 57 bus system 

From bus To bus ∑   𝑃   
     

 

24 25 1.6371 

8 9 1.6218 

4 18 1.4457 
11 41 1.3230 

4 18 1.2727 

 

 

4.2.  LQP_LT Index Computation for Heavily Loaded System 

To test the effectiveness of LQP_LT index in identifying the weak load buses and weak lines in the 

IEEE 57 bus system, the loads are increased in stages until the power flow diverges. For the IEEE 57 bus 

system, the power flow diverges when the loading at all the load buses are increased by 57.9% or by a 

loading factor of 1.58 from the base case load. Figure 2 shows the ∑   𝑃        , recorded at the 5 most 

critical lines for the IEEE 57 bus system. From the figure, it was found that LQP_LT summation on the lines, 

∑   𝑃        , for the IEEE 57 bus system increases as the load demand in all load buses are increased to a 

maximum of 57.9 % from the base values. It is obvious that line connecting bus 1 to bus 16 has the 

highest ∑   𝑃        , that is, 10.2585. This indicates that the line connecting bus 1 to bus 16 has the 

highest congestion level, or shortage of transmission capacity to cater for the increased load demand. 

On the other hand, the ranking results of ∑   𝑃        for the IEEE 57 bus system is shown in 

Figure 3. The highest ∑   𝑃        index is obtained at bus 31 followed by bus 18, 25, 42 and bus 53.  

This indicates that these buses are the weak load buses in the system, and have contributed to high congestion 

level in the critical lines shown in Figure 2. It can be concluded that bus 31, followed by bus 18, bus 25, bus 

42 and bus 53 are the suitable locations for load shedding execution. 
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Figure 2. Performance of ∑   𝑃         for 5 critical lines in the IEEE 57 bus system for increased load 

condition 

 

 

 
 

Figure 3. LQP_LT index, ∑   𝑃       , computed for load buses with loading increment 

 

 

4.3.  Comparison of LQP_LT Index with NVSI, Lmn and FVSI 

To evaluate and validate the weak load bus identification using the proposed ∑   𝑃       ,  

a comparison was made for the heavily loaded IEEE 57 bus system using NVSI, FVSI and Lmn indices.  

To maintain consistency in this comparison study, the maximum loading factor for the test system is 

considered to evaluate the performance of the NVSI, FVSI and Lmn indices in determining the weak lines 

and weak load buses. Table 3 shows the ranking results obtained by using the NVSI, FVSI, Lmn and 

LQP_LT indices at the maximum loading of 57.9% for the IEEE 57 bus system. The results are ranked from 

highest index to the lowest index to indicate the critical lines and the weak load buses in the system.  

For the FVSI, NVSI and Lmn indices, the receiving end bus for each critical line identified is taken 

as the weak load bus. The 10 critical lines for the test system are shown in Table 3. Evaluation on the index 

performance for the system shows that Lmn and NVSI index indicated bus 16 as the weakest bus,  

while LQP_LT index traced bus 31 as the weakest bus and the FVSI index indicated bus 49 as the weakest 

bus. Subsequent ranking order for the weak load buses varies for all the indices. The FVSI index indicated 

line connecting from bus 13 to bus 49 as the most critical line, where else LQP_LT, LMN and NVSI indices 

have indicated line connecting from bus 1 to bus 16 as the most critical line. From the results shown in  

Table 3, the NVSI, FVSI, LMN and LQP_LT indices give different ranking order of the critical lines but 

there are similarities in the critical lines detected. The difference in results is due to the variation in the index 

formulation. For example, NVSI and LQP_LT indices considers the active and reactive powers in its 

formulation, where else the LMN and FVSI indices consider only the receiving end reactive power. 

The results also show that the common critical line identified by ∑   𝑃         index and other 

indices namely, NVSI, FVSI and LMN is the line connecting bus 13 to bus 49 as shown in Table 3.  

The  ∑   𝑃          for this line, which is ∑   𝑃         has been derived from the reactive power fraction 

contribution of all the load buses in the system as shown in Figure 4. Load bus 23 has the most contribution 

in this line with the highest index value of 0.0549, and then followed by load bus 31 with a value of 0.0464 

and bus 25 with a value of 0.0431. The other indices such as FVSI, NVSI and LMN are not able to reveal 

much information on the participation of the load buses in the system as compared to the tracing method. 
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Table 3. Critical lines and weak load buses ranking at maximum loading 

 

 

 
 

Figure 4. Traced LQP_LT, NVSI, FVSI and LMN index on common critical line (line connecting from bus 

13 to bus 49) 

 

 

5. CONCLUSION 

The performance of the proposed reactive power tracing index, LQP_LT for determining the voltage 

unstable areas in a power system has been validated by comparing it with the existing indices such as FVSI, 

NVSI and Lmn and the IEEE 57 bus test system is used for the comparative analysis. The reactive power 

tracing applied via LQP_LT index have created a useful ranking list of weak load buses. Comparison of 

results obtained by LQP_LT index with stability indices NVSI, FVSI and Lmn showed that there is similarity 

in the determined critical lines and critical load buses. However, the ranking order varies for all the other 

indices. The drawback of the existing indices as compared to LQP_LT index is that these indices could not 

exactly indicate the weak load buses for any corrective actions to be taken by system operators. In the 

literature, choosing the receiving end buses of a critical line located by NVSI, FVSI and Lmn index is a 

common practice but less accurate. This is proven in this study, since the results obtained have strongly 

showed that the receiving end buses of any critical line may not be the actual weak bus. Thus, the LQP_LT 

index which incorporates the power tracing capability is a new index for accurate weak load bus detection in 

a critical power system. The reactive power tracing method and the proposed LQP_LT index developed in 

MATLAB can be easily used for online applications due to its simple calculation and robustness. 
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