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Abstract  This paper investigates the river flowrate at 
two branches of bifurcated river. The mathemat ical model 
from the literature is formulated based on momentum 
principle and mass continuity to cope with river flowrate at 
different bifurcation angles. The hydraulic variables, 
geometric properties of trapezoidal cross-sectional river 
and other physical characteristics of bifu rcated river are 
provided, which may be assumed to be given beforehand 
for practical applications. An example of river bifurcation 
problem is given by UTM Centre fo r Industrial and 
Applied Mathematics (UTM-CIAM), Universit i Teknologi 
Malaysia. Maple software is used to implement the 
proposed model equation and generate the results. The 
amount of bifurcated river flowrate with different 
bifurcation angles is determined, resulting in a reasonable 
discussion. It is shown that for specific  bifurcation angles, 
the river flowrates after the b ifurcated junction are less than 
the critical flowrate. Finally, the results of applied problem 
indicate that the right-angled river bifurcat ion would  be 
preferable to mitigate flood. 

Keywords  Bifurcat ion, Flowrate, Momentum 
Principle 

1. Introduction
River bifurcation is the process that determines the 

distribution of flow, sediments and contaminants along the 
downstream river branches. This process is important in 
order to mitigate flood due to climate change. There have 
been several approaches in investigating the river 
bifurcation or bifurcated open-channel flow. For instance, 
[1] used both analytical and experimental ways to study the 
bifurcated open-channel flow. The channels used are of 
rectangular cross-sectional and the branch channel being 

set at a right-angled midway along the straight main 
channel. The estimat ion of the flowrate ratio in terms of the 
Froude number and the depth ratio had been obtained using 
theoretical model in [2]. The authors provided the 
experimental data for the validity of their proposed model. 

Based on experimental observations, the work of [3] 
carried out a study on depth discharge relationship and 
energy-loss coefficient for a subcritical, equal-width, 
right-angled dividing subcritical flow over a horizontal bed 
in a narrow aspect ratio channel. The theoretical model for 
subcritical flows in d ivid ing open channel junction is 
derived in [4] with the aid of the overall mass conservation 
together with the momentum principle in the streamwise 
direction to two control volumes through the junction. 
Further, a physical model with meandering features is 
constructed in [5] to investigate the effect of off-take 
angles on the flow distribution at a concave channel 
bifurcation. 

A theoretical model for pred icting depth of water with 
certain div iding angles has been proposed by [6]. The 
authors developed the model equations for both combining 
and dividing types of subcritical flows at channel junctions 
using the principal of momentum balance. The width of all 
the channels both in case of combining and dividing has 
been kept differently. 

An unsteady mathematical model for pred icting flow 
divisions at a right-angled open-channel junction [7] and 
hydrodynamic model [8, 9] for b ifurcat ing stream was also 
done. More recently, the findings of nearly 10 years of 
researches into modeling b ifurcation system with 
numerous simulation techniques have been reviewed [10]. 

However, none of the above work analyzes the effect of 
different bifurcation angles in river flowrate. In fact, the 
majority of the existing models are designed for a 
right-angled junction. Therefore, the aim of this paper is to 
investigate the behavior of river flowrates influenced by 
different bifurcation angles using mathematical model 
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approach. The following section will describe the 
characteristics of the bifurcated channel and its geometric 
properties. Section 3 deals with the fo rmulat ion of the 
mathematical model. An example o f river bifurcation 
problem is given in Section 4. In section 5, the results are 
analyzed and discussed. Finally, some conclusions are 
made as well as the recommendation for future study. 

2. Methodology 
This section provides the detailed description of the 

channel and formulation of the model fo r the present study. 

2.1. Description of the Channel 

The characteristics of the bifurcated open-channel and 
its cross-sectional properties have to be considered for the 
equation of mathemat ical model. The schemat ic layout of 
the bifurcated channel is illustrated in Figure 1. A main 
channel is connected with two branch channels. The angles, 

1θ  and 2θ  at the b ifurcated junction are called 
bifurcation angles. For the application of momentum 
conservation law, we consider the boundaries of control 
volume as shown by the dotted line. The section has been 
positioned at the distance of two times the width of the 
channel at upstream and three times the width of the 
channel at downstream of the bifurcation. 

 

Figure 1.  Schematic layout of the bifurcated channel: Q = flowrate, 
b = bottom width of channel, θ = bifurcation angles, 0 = main channel, 1 
= channel 1, 2 = channel 2 

The channels are assumed to be uniform cross section. 
Channel cross sections can be considered to be either 
regular or irregular. A regular section is one whose shape 
does not vary along the length of the channel, whereas an 
irregular section will have changes in its geometry. The 
most common irregular section of open channel is a 
trapezoidal shape. The typical trapezoidal cross-sectional 
is shown in Figure 2.  

 

Figure 2.  Geometric details of the typical trapezoidal cross-sectional: 
α = angle of the slope side, b = bottom width, y = depth of flow, λ = 
wetted length measured along the slope side, T = top width, z = channel 
side slope 

According to [11], flow hydraulics and momentum 
exchange in straight channels are significantly influenced 
by geometric and hydraulic variables. The cross-sectional 

area, A  is given by 2= +A by zy , in which b  is the 
width of the channel bottom and y  is the depth of flow. 
The side slope is usually specified as horizontal : vert ical, 

:1z . Additional parameters for open channel flow are the 
wetted perimeter, Pw , the hydraulic radius, RH  and the 
hydraulic depth, D . The wetted perimeter, 2λ= +P bw  
is the length of the line of contact between the water and 
the channel where the wetted length measured along the 

slope side is given by ( )22λ = +y yz . 
The hydraulic radius, RH  is the area d ivided by the 

wetted perimeter, that is, =
ARH Pw

. The hydraulic depth 

is the area divided by the top width, =
AD
T

 where 

2= +T b zy . Flow area is the cross-sectional area of the 
flow taken perpendicular to the flow direction.  

Even though the river cross-sectional areas of the main  
channel and channel 1 are assumed to be similar, the 
capability of the channel to convey water can vary due to 
bifurcation angle. If the flowrate is unknown, a uniform 
velocity, V  that applies to an entire cross-sectional can be 
determined using Manning’s equation [12, 13] as shown 
below: 

1 0.66 0.5=V R SHn , 

where n  is the roughness coefficient and S  is the 
average slope of channel. The dimensionless ratio of the 
inertial forces to gravitational forces acting on the flow is 
represented by Froude number, F  is defined as 

= =
 
 
 

V QF
gD AA g

T , 
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where V  is the velocity, D  is the hydraulic depth and 

the gravitational accelerat ion, g  is 29.80665m/s . The 
Froude number plays a significant role in open channel 
flow analysis. The hydraulic behavior of channel flow 
varies significantly depending on whether the flow is 
critical ( 1=F ), subcritical ( 1<F ) o r supercrit ical 
( 1>F ). 

The division of flowrate at bifurcated channel can be 
determined using the aid of momentum principle and mass 
continuity with the following assumptions: 
(a) Main channel is straight prismatic channel, to which 

two branches of bifurcated junction are connected. 
All channels are trapezoidal cross-sectional. 

(b) The flow is from main channel into channels 1 and 2. 
(c) The velocities and water surface elevations are 

constant across the channels at the inflow and outflow 
sections of the control volumes. 

(d) The pressure distribution is hydrostatic at all sections 
of control volume. 

(e) The geometrical properties such as channels width, 
channels depth, control volume lengths and slope of 
channel are known. 

(f) The depth of flow in the main channel, channels 1 and 
2 are equal. 

(g) The shear stresses on the flow surface due to wind, the 
effects of vertical acceleration and the wall friction 
force as compared to other forces are neglected. 

2.2. Formulation of the Model 

This section describes the detail formulation of 
mathematical model based on momentum principle and 
mass continuity [7]. The basic continuity equation is taken 
as starting point for the formulation, 

,0 1 2= +Q Q Q             (1) 

where ,  0 0 0 1 1 1= =Q A V Q A V  and 2 2 2=Q A V . The 
terms ,  0 1Q Q  and 2Q  are flowrates, ,  0 1A A  and 2A  
are trapezoidal cross-sectional areas while ,  0 1V V  and 

2V  are velocit ies in main channel, channel 1 and channel 
2 respectively. The hydrostatic force on the horizontal 

strip of A  will be γ=P A  where 2= +A by zy  and 
γ  are the specific weight of water. Therefore, the total 
horizontal force can be determined as follows: 

2 3 2 32  
2 3 2 300

γ γ
   

  = + = + = +
   ∫

yy
by zy by zyP by zy dA .(2) 

By apply ing the continuity equation (1) and momentum 
principle in the flow direction of the main channel, we 
obtain 

 

( )

cos cos0 2 2 1 1 2 1

cos cos .2 2 2 1 1 1 0 0

θ θ
γ θ θ

− − − − − ∆ =

+ −

P P P U U P

Q V Q V Q V
g

 (3) 

The terms of momentumtransfering from the main  
channel to the branch channels are given in the following 
forms [7]: 

sin ,  sin ,1 1 0 1 2 2 0 2ρ θ ρ θ= =U Q V C U Q V C  
where  

( )

2 1 25 0 0 0
26 40 12 1 0

+ = − −   + 

F k k
C

qr k
. 

Noting that 
2 3

0 2 2 cos2 22 3
γ θ
 
 ∆ = + − 
 

b y zy
P P  while 

the density of water, ρ  is related to γ  and g  which 

can be determined as γρ =
g

. By moving the terms, 1U  

and 2U  to the right hand side (RHS), (3) can be written 
as follows: 

[

]

cos cos cos0 2 2 1 1 2 2 2

cos sin sin .1 1 1 0 0 2 0 2 1 0 1

γθ θ θ

θ ρ θ ρ θ

− − − ∆ =

+ − + +

P P P P Q V
g

Q V Q V Q V C Q V C
 (4) 

By taking the left hand side (LHS) of (4), we have the 
following equation: 

cos cos0 2 2 1 1θ θ− − − ∆P P P P .          (5) 

Based on (2), we simplify (5) as follows: 

( )

( )

1 2 2 2 cos0 0 0 2 1 1 12
3 3 3 cos .0 2 1 13

γ θ

θ

 − −
+ − − 

b y b y b y

z y y y
     (6) 

Now taking the RHS of (4), 

[

]

cos cos2 2 2 1 1 1 0 0

sin sin .2 0 2 1 0 1

γ θ θ

ρ θ ρ θ

+ −

+ +

Q V Q V Q V
g

Q V C Q V C
      (7) 

Based on (1), we produce 

0 02 2 1 1cos cos2 1
2 1 0

2 0 1

 

0sin sin .2 1
0 0

γ θ θ

θ θ

 + −


+ + 


Q QQ Q Q Q
g A A A

Q Q Q Q
C C

A A

  (8) 

By using algebraic manipulation in (8), yields 
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2 2 21 10 2 1cos cos2 12 2/ /0 2 0 1 00 0

2 11 sin sin .2 1
0 0

γ
θ θ

θ θ


= +


 − + +  
 

Q Q Q
gA A A A AQ Q

Q Q
C

Q Q

 (9) 

Let the flowrate rat io, 1
0

=
Q

qr Q
. Based on (1) and 

,1 0Q Q qr= we get 0 2 0= +Q Q Q qr  and subsequently 

produce 2 1 .
0

Q
qrQ

= −  Therefore, the fo llowing  equation 

is obtained: 

( )

( )( )

22 210 cos cos2 1/ /0 2 0 1 0
1 1 sin sin .2 1

γ
θ θ

θ θ

 − +


− + − + 

qQ qr r
gA A A A A

C q qr r

.     (10) 

Knowing that  

2 2 2 2 2 2
20 0 0 0 0 0 0 0

02 30 0 0 0 00 0
= × × = =

Q Q T A Q T A A
F

gA gA T T TA gA
. 

Subsequently, yielding 

2 2 3 2 422 0 0 0 0 0 .0 20 0

+ +
+

b y b zy z y
F

b zy
       (11) 

Let 0 0
0

=
k b

z
y

 and factorize, we have  

( )
( )

2 2 21 20 0 0 02 .0 1 20 0

+ +

+

b y k k
F

b k
       (12) 

Hence, 
( )
( )

22 1 02 20
0 0 0 1 20 0

+
=

+

kQ
F b y

gA k
. The term 2

0

A
A

 

can be written as follows: 

2
2 2 2 2

20 0 0 0

+
=

+

A b y zy
A b y zy

.          (13) 

Let 2
0
=

y
yry

, 2
2

0
=

b
Br

b
 and 1

1
0
=

b
Br

b
, we get 

2 2 0 0 22
0 0 0 0 0 0

+
=

+
b y k b y yA r

A b y k b y
.        (14) 

Similarly, the term 1
0

A
A

 is given by  

2
0 0 1

1 1
01 .

20 0 0 0
0 0

0

+
=

+

k b y
b y

yA
A k b y

b y
y

           (15) 

In our case, it has to be noted that the depths of all 
channels are equal, 0 1 2y y y= = . Thus, the depth ration 

is given by 1 2
0 0

y y
yr y y

= = . Equation (15) is written as 

follows: 

1 1 0 0 11
0 0 0 0 0 0

+
=

+
b y k b y yA r

A b y k b y
.        (16) 

By multip lying the numerator and denominator of (14) 

and (16) with 1

0 0b y
, we obtain 

( )1 01 ,
10 0

+
=

+

Br k y yA r r
A k

        (17) 

( )2 02
10 0

+
=

+

Br k y yA r r
A k

.        (18) 

We substitute (17) and (18) into (10), yielding 

( )
( )

( )
( ) ( )

( ) ( )
( )( )

2 21 102 2 cos0 0 0 21 2 / 10 2 0 0
2

cos 11/ 11 0 0
1 sin sin .2 1

γ θ

θ

θ θ

+ −
+ + +

+ −
+ +

+ − + 

k qrF b y
k Br k y y kr r

qr
Br k y y kr r

C q qr r

 (19) 

Simplifying (19), we get 

( )
( )

( )
( )

( ) ( )( )

2 21 1102 2 0 cos0 0 0 21 2 0 2 0

2
cos 1 1 sin sin .1 2 1

1 0

γ θ

θ θ θ

 + −+ 
+ +


+ − + − + +  

k qk rF b y
k y Br k yr r

qr C q qr rBr k yr

 (20) 

Finally, LHS of (6) is equal to RHS of (20) that 
becomes 

( ) ( )

( ) ( )

( )
( ) ( )
( )( )

1 2 10 2 2 2 cos0 0 0 2 1 1 12 20 0
23 3 3 2cos 10 2 1 1 0 03

2 211 0 cos cos2 1
2 0 1 0

1 1 sin sin .2 1

θ

θ

θ θ

θ θ

+  − −

+ − − = +
  −+  +  + + 

− + − + 

k
b y b y b y

b y
z y y y F k

qk qr r
y Br k y Br k yr r r

C q qr r

 (21) 
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After simplification of (21), the general equation of 
bifurcated flow is obtained in the following form: 

( ) ( )

( ) ( )

( )
( ) ( )

( )( )

1 2 21 2 1 cos0 1 12
123 3 20 01 cos 11 0 03

2 21
cos cos2 1

2 0 1 0

1 1 sin sin .2 1

θ

θ

θ θ

θ θ

+ − −
+ + − − = +  

 − + + + 
− + − + 

k y Br yr r

k k
y y F kr r yr

q qr r
Br k y Br k yr r

C q qr r

 (22) 

3. River Bifurcation Problem 
In this section, we give special attention to river 

bifurcation problem in Sungai Nenggiri, Gua Musang, 
Kelantan. Sungai Nenggiri that is geographically located 
in the north eastern part of Peninsular Malaysia within 
latitude 4.97024° to 4.96951° North and 101.77144° to 
101.77207° East. This river is considered in this study due 
to serious floods’ occurrence during Monsoon season in 
the past few years. Extensive flooding throughout the 
catchment occurs during heavy and prolonged rainfall 
resulting in h igh river flow. The river flow will overspill 
the banks of Sungai Nenggiri, disrupting road network 
and human life. 

The main mit igation action that can be taken is by 
diverting some of Sungai Nenggiri’s flow during peak 
flow to a new river, namely Sungai Anak Nenggiri. The 
amounts of river flow from Sungai Nenggiri (main 
channel) going through Sungai Nenggiri after the 
bifurcation junction (channel 1) and Sungai Anak 
Nenggiri (channel 2) are depending on the bifurcation 
angles, 1θ  and 2θ . The flowrate in the main channel is 

assumed to be 31000m /s0 =Q  while 1Q  and 2Q  are 
the flowrates in channel 1 and channel 2 respectively. The 
critical flowrate in channel 1 is expected to be 

3800m /s1 =Q . We theorize that if the flowrate exceeds 
this value, flood will occur in channel 1. Therefore, (22) 
can be applied  to determine the amount of flowrates in 
channel 1 and channel 2 with different bifurcation angles. 

This general problem is given by UTM Centre for 
Industrial and Applied Mathemat ics (UTM-CIAM), 
Universiti Teknologi Malaysia. However, the real 
experimental data of Sungai Nenggiri is unavailable at this 
time for error analysis. For application purpose, we 
assume that the channels are normal, clean, straight, full 
stage, with no rifts or deep pools. Thus, 0.03=n  is 
selected as manning’s coefficient while the slope of the 
main channel is 0.0001814260235m=S . Since the 
Froude number for the main channel is 

0.1749024370 =F , it can be said that the flow is 
subcritical. The geometric and hydraulic properties of 

bifurcated channel used in the p roposed model are 
presented in Table 1. 

Table 1.  Geometric and hydraulic properties (GHP) of bifurcated 
channel 

GHP Main channel Channel 1 Channel 2 

α  600 600 600 
y  3.5m 3.5m 3.5m 
z  4.081632657m 4.081632657m 0.859291084m 

T  300m 300m 60.15037594m 

b  271.285714m 271.285714m 54.13533835m 

A  1000m2 1000m2 200m2 

λ  14.70821651m 14.70821651m 4.614668923m 

Pw  300.8450044m 300.8450044m 63.3646762m 

RH  3.323970767m 3.323970767m 3.156332708m 

D  3.33m 3.33m 3.325m 

4. Results 
To analyze the results, the model (22) is performed using 

Maple software. The bifurcation angles, 1θ  and 2θ  
considered in this study are 

0 0 0 0 0 00 ,  15 ,  30 ,  45 ,  60 ,  75  and 090 . The values of 
flowrate ratios, qr , flowrates in channel 1, 1Q  and 
flowrates in channel 2, 2Q  are tabulated in Tables 2-8. It 
has to be mentioned that qr  is the ratio o f flowrate in  
channel 1 to the flowrate in main channel. For simplicity, 
the graphical representations of flowrate ratios and 
bifurcation angles are shown in Figure 3. 

Table 2.  Flowrates in channels 1 and 2 when 001θ =  

1θ  2θ  qr  1Q  , 3m /s   2Q , 3m /s  
0 0 0.8067940552 806.7940552 193.2059448 

0 15 0.8227092780 822.7092780 177.2907220 

0 30 0.8284124759 828.4124759 171.5875241 

0 45 0.8214011067 821.4011067 178.5988933 

0 60 0.7928048911 792.8048911 207.1951089 

0 75 0.7125371460 712.5371460 287.4628540 

0 90 0.4161533812 416.1533812 583.8466188 

Table 3.  Flowrates in channels 1 and 2 when 0151θ =  

1θ  2θ  qr  1Q  , 3m /s   2Q , 3m /s  

15 0 0.7911862451 791.1862451 208.8137549 

15 15 0.8067650940 806.7650940 193.2349060 

15 30 0.8110586289 811.0586289 188.9413711 

15 45 0.8010471671 801.0471671 198.9528329 

15 60 0.7663678231 766.3678231 233.6321769 

15 75 0.6717559187 671.7559187 328.2440813 

15 90 0.3192905923 319.2905923 680.7094077 
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Table 4.  Flowrates in channels 1 and 2 when 0301θ =  

1θ  2θ  qr  1Q  , 3m /s   2Q , 3m /s  
30 0 0.7869497049 786.9497049 213.0502951 
30 15 0.8027210236 802.7210236 197.2789764 
30 30 0.8067320739 806.7320739 193.2679261 
30 45 0.7957057968 795.7057968 204.2942032 
30 60 0.7582902466 758.2902466 241.7097534 
30 75 0.6546484797 654.6484797 345.3515203 
30 90 0.2401904453 240.1904453 759.8095547 

Table 5.  Flowrates in channels 1 and 2 when 0451θ =  

1θ  2θ  qr  1Q  , 3m /s   2Q , 3m /s  
45 0 0.7949051046 794.9051046 205.0948954 
45 15 0.8114393561 811.4393561 188.5606439 
45 30 0.8164352045 816.4352045 183.5647955 
45 45 0.8066871811 806.6871811 193.3128189 
45 60 0.7705429480 770.5429480 229.4570520 
45 75 0.6645994258 664.5994258 335.4005742 
45 90 0.1722446834 172.2446834 827.7553166 

Table 6. Flowrates in channels 1 and 2 when 0601θ =  

1θ  2θ  qr  1Q  , 3m /s   2Q , 3m /s  
60 0 0.8159655445 815.9655445 184.0344555 
60 15 0.8339066727 833.9066727 166.0933273 
60 30 0.8414225983 841.4225983 158.5774017 
60 45 0.8358869677 835.8869677 164.1130323 
60 60 0.8066091461 806.6091461 193.3908539 
60 75 0.7097821934 709.7821934 290.2178066 
60 90 0.1112785518 111.2785518 888.7214482 

Table 7.  Flowrates in channels 1 and 2 when 0751θ =  

1θ  2θ  qr  1Q , 3m /s   2Q , 3m /s  
75 0 0.8509646114 850.9646114 149.0353886 

75 15 0.8710508212 871.0508212 128.9491788 

75 30 0.8830122328 883.0122328 116.9877672 

75 45 0.8856383590 885.6383590 114.3616410 

75 60 0.8716827337 871.6827337 128.3172663 

75 75 0.8063916606 806.3916606 193.6083394 

75 90 0.0542840796 54.28407957 945.7159204 

Table 8.  Flowrates in channels 1 and 2 when 0901θ =  

1θ  2θ  qr  1Q , 3m /s   2Q , 3m /s  
90 0 0.6742997042 674.2997042 325.7002958 

90 15 0.7031325671 703.1325671 296.8674329 

90 30 0.7164798741 716.4798741 283.5201259 

90 45 0.7131229768 713.1229768 286.8770232 

90 60 0.6837385036 683.7385036 316.2614964 

90 75 0.5844868749 584.4868749 415.5131251 

90 90 0.8198591028 819.8591028 180.1408972 

The amount of 1Q  is less than 3800m /s  when 

001θ =  and 0 060 ,  752θ =  or 090 . If 0301θ = , 

1Q  is less than 3800m /s  except when 0152θ =  or 

030 . For 0151θ =  or 045 , 1Q  is less than 3800m /s  

when 0 0 00 ,  60 ,  752θ =  or 090 . It also can be 

observed that 1Q  is less than 3800m /s  when 0601θ =  

and 0752θ =  or 090 . From Tables 2-7, it is observed 

that 1Q  decreases significantly when 0902θ = . The 

lowest value of 1Q  is when 0751θ =  and 0902θ =  
as presented in Table 7. However, 1Q  becomes greater 

than the critical flowrate when 0901 2θ θ= = . The values 
of bifurcation angle when 1Q  is less than the critical 
flowrate that is summarized in Table 9. 

Table 9.  Bifurcation angles when 0.8qr <  

1θ  2θ  
00 600, 750, 900 

150 00, 600, 750, 900 

300 00, 450, 600, 750, 900 

450 00, 600, 750, 900 

600 750, 900 

750 900 

900 00, 150, 300, 450, 600, 750 

 

Figure 3.  Graph of flowrate ratios, qr  with respect to 2θ  when 

0 0 0 0 0 0 00 ,  15 ,  30 ,  45 , 60 , 75 , 901θ =  

Figure 3 shows the graph of qr  versus 2θ  where the 

values of 1θ  are from 00  to 090 . The horizontal 
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dashed line at 0.8=qr  represents the critical flowrate 
ratio. For any 1θ , it can be seen that qr  approaches to 

the critical flowrate ratio except when 0902θ = . To 
avoid over-flow in channel 1, both 1θ  and 2θ  cannot be 

090 .  
From the results obtained, it can be observed that the 

right-angled bifurcat ion at one of the branches (either 
0901θ =  or 0902θ = ) would be efficient to reduce the 

amount of flowrates in channel 1 significantly. However, 

T-junction (when both 1θ  and 2θ  are 090 ) is not 
recommended. 

5. Conclusions 
This study provides insightful informat ion for 

understanding of the open-channel flow and assists 
engineering design of river bifu rcation. The mathematical 
model is derived based on continuity equation, momentum 
principle and some algebraic manipulations to predict the 
bifurcated river flowrates with different bifurcat ion angles. 
The model equation consists of Froude number and various 
important parameters such as bifurcation angles, width of 
channels, depth of flows and flowrates in branches of river. 
Thus, it can be applied for other rivers with different 
geometric properties. The analysis of the results reveals 
that the river flowrate after the bifurcated junction is below 
the critical flowrate if an appropriate bifurcation angles are 
considered. The implementation of right-angled 
bifurcation at Sungai Nenggiri can be an alternative action 
to mitigate flood. 

In future study, the mathemat ical model for river 
bifurcation with different bifurcation angles can be 
investigated when the problem concerning the recircu lation 
region is understood. Other interesting features that can be 
observed are the hydraulic jumps and the surface 
discontinuity. Furthermore, other minor factors affect the 
river b ifurcation flowrate such as wall frict ions and 
external forces that should be considered. 

Nomenclatures 
A : Cross-sectional area of the channel 
C : Constant 
F : Froude number 
g : Gravitational acceleration 
k :  Side slope x flow depth to bottom width ratio 
P : Pressure force 
Pw : Wetted perimeter 
Q : Flowrate 

qr : Flowrate ratio 

b :  Bottom width of the channel 
Br : Width ratio 

T : Top width of the channel 
U : Momentum transfer 
V : Flow velocity 
y : Flow depth 
yr : Flow depth ratio 

ρ : Specific gravity 

γ :  Specific weight 

θ :  Bifurcation angles of channels 1 and 2 

Subscripts 
0 : Main channel (Sungai Nenggiri) 
1:  Channel 1 (Sungai Nenggiri after bifurcation) 
2 : Channel 2 (Sungai Anak Nenggiri) 
r : Ratio 
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