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A B S T R A C T

Nowadays perovskite emerges as a promising photosensitive material for next-generation solution-processed
devices. Perovskite-based solar cells degrade in ambient conditions up to some extent, after which they are
discarded. In our work, we are using reusing the degraded cells as a high-performance stable perovskite-based
photodetector. The symmetry of the detector is FTO/PEDOT:PSS/Perovskite/PC61BM/CdS/Ag showing sensi-
tivity to light with respect to (w.r.t) impedance and capacitance. To enhance the excitons generation and ab-
sorption of light, the electron transport layer of cadmium sulfide along with PC61BM is selected and PEDOT:PSS
layer is used for hole transportation. Atomic force microscopy, X-ray diffraction, and UV-absorption spectrum
were obtained to study the surface morphology, composition, and absorption of the perovskite layer. The electric
parameters within the frequency range 100 Hz to 200 kHz of samples under the effect of light were investigated.
Experimental results showed that with the change in light intensity from dark to 325W/m2, the highest im-
pedance and capacitance were observed at 100 Hz. The impedance sensitivity is −126.154 kΩm2/W and the
uppermost capacitance sensitivity w.r.t light intensity is 6.77 pFm2/W. Frequency-impedance and capacitance
relationships and sensitivities were also measured. The results showed that in the range from 100Hz to 200 kHz
the maximum impedance sensitivity is −343.37Ω/Hz in dark condition. While the capacitance sensitivity was
highest when light intensity was 325W/m2 (−37.27 pF/kHz), respectively. We attribute these observations due
to the generation of electron-hole pairs under light and by the increase of their concentration, by the presence of
the built-in capacitance and possible frequency dependence of the mobility of the charges.

Introduction

Photodetectors play a crucial role in the area of flame sensing,
missile plume detection, military, environmental water distillation,
real-time measurements, and industrial applications [1]. Instead of high
cost, poor selectivity in infrared and visible spectra, high voltage and
vacuum requirement optical sensors based on inorganic semiconductor
materials are available in the market due to a great advantage of quick
response [2–4]. To overcome these disadvantages hybrid organic-in-
organic perovskites are the best material for fabrication of photo-
detectors [5–8]. The bandgap of these synthesized organometallic ha-
lide perovskites material is tunable and showed high performances as

light-emitting diodes, field-effect transistors, photodetectors, sensors,
waveguides and modulators [9–18]. Non-linear properties of 0D/2D
perovskite have been also studied widely in literature and its utilization
in ultrafast optoelectronic communication have been observed [19–21].
In a typical perovskite heterojunction, electron and hole transport
layers i.e., ETL and HTL, are used to enhance its absorption efficiency
[22–25].

Although perovskite has numerous advantages, its devices are still
not commercialized due to its stability issues. However, the lead in
perovskite is toxic therefore researchers are working on lead-free per-
ovskite compositions [9,10]. Furthermore, the perovskite degradation
due to light, oxygen, moisture etc is the main issue to avoid it either
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good encapsulation of devices or materials which remain unaffected by
these parameters should be selected for the improved results, long term
stability and anti-oxidation of perovskite-based devices. The devices
degrade rapidly as compare to other photosensitive materials a possible
reason can be the poor interface between the substrate and interfacial
layers [25,26]. The perovskite is usually paired with PEDOT:PSS, as it
has good conductivity, its work function is quite high and can be de-
posited by an easy technique of solution processing [27]. Literature
showed that the perovskite materials band-gap is ~1.3 eV which is very
good for optical devices [28]. Its highest occupied molecular orbital
(HOMO) level is 4.1 eV, while its lowest unoccupied molecular orbital
(LUMO) is at 3.7 eV [29]. These materials are also well investigated in
the area of solar cells application with narrow band gaps along with
their thermal stability [30].

One of the most important areas for utilization of organic semi-
conductors is the light detectors, which provide many advantages in-
cluding low cost, high sensitivity, and environment-friendly technology
[31,32]. Perovskite-based photodetector, with a complete structure i.e.,
ITO/PEDOT:PSS/CH3NH3PbI2.4Br0.6/PC61BM/C60/LiF/Ag was fabri-
cated by brush coating and at 650 nm light illumination, a value of
~1011 Jones was observed (−5 V biased voltage) [33]. Another pho-
todetector with PEDOT:PSS film was investigated and results showed an
increment of work function and resistivity with an increase in light
[34]. A perovskite-based optocoupler device was fabricated and light
effect showed a sensitivity of ~104 with the biased voltage of 0–4 V.
Although when 6 V is applied at input it achieved photo-responsivity of
1.0 AW−1 and current transfer ratio about 28.2% and amplified up to
263.3% at 341.3 μWcm−2 [35]. It was concluded that a good selection
of sensitive material for photodetectors requires strong absorption, the
mobility of charges should be high and convenience between materials
energy levels.

In this article, we present results of the light influence on the im-
pedance and capacitance of the photodetector. The perovskite is
sandwiched between hole and electron transport layers with the full
device structure FTO/PEDOT:PSS/Perovskite/PC61BM/CdS/Ag. The
photodetector was fabricated by using a low-cost spin coating tech-
nology. To enhance the device performance, excitons generation, light
absorption and stability of perovskite layer, the cadmium sulfide (CdS)
along with PC61BM are selected as an electron transport layer (ETL) and
PEDOT: PSS as the hole transport layer (HTL) [36,37].

Experimental

Perovskite (CH3NH3PbI3-XClX), Poly(3,4-ethylene dioxythiophene):
Poly(styrene sulfonate) (PEDOT:PSS), Fullerene derivative [6,6]-
phenyl-C61-butyric acid methyl ester (PC61BM) and Cadmium Sulfide
(CdS) were purchased from Ossila.

The photodetector was fabricated in an inert vacuum environment.
First of all, the FTO coated glass slides were cleaned sequentially in
acetone for 10min, then for further 10min, they were cleaned with

ethanol within the ultrasonic bath. Followed by cleaning distilled water
and N2 blower was used to dry the slides and finally processed in
plasma etcher for 5min under 1mbar pressure. Then to avoid short-
circuiting between electrodes the glass substrate with pre-deposited
FTO was isolated from sides of slides.

Later, the substrates for 30min heated on hot the plate at 120 °C and
HTL of PEDOT:PSS was spin-coated at 2000 rpm on FTO coated slide for
30 sec. Afterward, it was annealed for 10min at 130 °C and a layer of
perovskite was spin-coated for 30 sec at speed of 3000 rpm, followed by
drops of chlorobenzene on perovskite during last 15 sec. Then once
again slide was annealed for 90min at 100 °C, while perovskite film
transformed its color from pale yellow to dark brown confirming its
layer deposition. After this, the ETL of PC61BM (dissolved in chlor-
obenzene) was spin-coated at 1500 rpm over perovskite film for 30 sec.
Moreover, another ETL of 70 nm thick CdS was deposited over PC61BM
followed by silver as the top electrode through the thermal evaporator
at 10−6 mbar. Schematic view and (b) energy level of perovskite mul-
tifunctional sensor. The schematic diagram of the finalized photo-
detector is presented in Fig. 1(a). However, Fig. 1(b) shows the energy
levels of the device.

During experiments, the samples were placed in the chamber at
ambient condition. Devices were fabricated by Laurell WS-650-23NPP
spin coater. The light intensity was measured by LM-80 AMPROBE in-
tensity meter. As a light source, the filament lamp was used with the
emission spectrum of wavelengths ranging from 200 nm to 850 nm.
Impedance and capacitance within the range of frequencies from
100 Hz to 200 kHz were measured by LCR meter MT 4090. Experiments
were conducted in cleanroom. JEOL JSM-6460 and Flex AFM Nanosurf
3000 was used for scanning electron and atomic force microscopy. The
X-ray diffraction analysis and UV-absorption spectrum were char-
acterized by the Philips PW3710 and Beckman DU640 UV/V spectro-
photometer, respectively.

Results and discussion

The surface morphology of fresh and 90 days aged perovskite is
shown in Fig. 2(a) and (b) measured by scanning electron microscope
(SEM) at 2 µm. The fresh perovskite film grain size is between 150 and
300 nm in diameter and surface is pinhole-free, while the aged samples
confirm the degradation of the device and layer shows needle-like
structure. Although, the PEDOT:PSS and then perovskite layer on
PEDOT:PSS through AFM is shown in Fig. 2(c) and (d). The 3D images
reveal that the average roughness of PEDOT:PSS layer is 140 nm, where
the average roughness of the perovskite layer is up to 230 nm. It can be
perceived that film is well adherent but not free from crystal defects, as
the large gran sizes designate roughness of the film which eventually
intensifies the series resistance of the device.

For the composition of crystalline structure perovskite
(CH3NH3PbI3-XClX) material was categorized by X-ray diffraction. Fig. 3
(a) ratifies the existence of methylamine lead halide perovskite and its

Fig. 1. (a) Schematic view and (b) energy level of perovskite photodetector.

T.A. Qasuria, et al. Results in Physics 15 (2019) 102699

2



cubic crystal were represented by (2 2 0) and (3 3 0) planes, however,
the peaks were observed at 28.4° and 43.1°, respectively. Afterward, the
perovskite layer was characterized for the absorption spectrum within
ultraviolet and visible range by UV–Vis spectroscopy as presented in
Fig. 3(b). The absorption spectrum revealed that the methyl halide
perovskite covers the broad spectrum from 350 to 750 nm indicating
that its selection in photosensitive applications is appropriate.

The electric characterization of the finalized samples was done and
calculated impedance- and capacitance to light intensity relationships
at different frequencies. Each of the following sensor’s response was
measured three times, results were repetitive and graphs are based on
averaged data. Fig. 4 shows the dependence of impedance at different
frequencies 100 Hz, 1 kHz, 10 kHz, 100 kHz and 200 kHz of FTO/
PEDOT:PSS/Perovskite/PC61BM/CdS/Ag samples as a function of light
intensity. However, with an increment in light intensity, the impedance

decreases and all frequencies follow the same pattern. Although as the
frequency increases the graphical results showed that the change in
impedance becomes small. Precisely when intensity of light increases,
the impedance decrease from 0 to 325W/m2 was 2.46 (at 100 Hz), 1.57
(at 1 kHz), 1.09 (at 10 kHz), 1.05 (at 100 kHz) and 1.03 (at 200 kHz)
times, respectively.

Fig. 5 presents that under the same physical conditions the sample
capacitance was measured. Results show that there is an increment in
capacitance of the samples as the light intensity increases from 0 to
325W/m2 by factor of 1.301 (at 100 Hz); 1.086 (at 1 kHz); 1.068 (at
10 kHz); 1.063 (at 100 kHz) and 1.062 (at 200 kHz). The dependencies
are slightly non-linear at lower frequencies and quasi-linear at higher
frequencies.

Under the effect of light intensity the change is either reversible
(concerning physical properties) or irreversible (concerning structures)

Fig. 2. Shows the SEM image of (a) fresh, (b) 90 days aged perovskite film, and 3D atomic force microscopy of (c) PEDOT:PSS and (d) Perovskite layer over
PEDOT:PSS, respectively.

Fig. 3. (a) XRD image and (b) UV–Visible absorption spectrum of perovskite layer.
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process takes place. Our results concerning the characterization of im-
pedance and capacitance w.r.t. light of the FTO/PEDOT:PSS/
Perovskite/PC61BM/CdS/Ag sensor which can be explained by an in-
crease in the concentration of charges due to generation of the electron-
hole pairs. This effect was reversible, probably, due to low concentra-
tion of the intensity of light intensity.

The sensitivity (SZ G/ and SC G/ ) is an important parameter that can
give us the rate of variation in impedance and capacitance with in-
creasing light intensity. It can be determined by:

=S Z
G

Δ
ΔZ G/ (1)

=S ΔC
ΔGC G/ (2)

where ΔZ, ΔC and ΔG refers to the change in impedance, capacitance
and light intensity. Summary Table 1 showed the sensitivity of the light
sensor w.r.t. impedance and capacitance.

Our data shows the values of SZ G/ and SC G/ decreased sharply with
increase of the applied frequency. The reason could be the presence of

capacitance presented in Eq. (3) and shown in Fig. 6(a). Although,
Fig. 6(b) shows the simplified form of the circuit. The perovskite is used
as the sensing layer, the parallel combination of capacitance (C) and
resistance (R) can be utilize to model the impedance (Z) of the photo-
detector. Fig. 6 shows the equivalent circuit for the fabricated per-
ovskite-based photodetector [38]. The Fig. 6 presents C as the sum of
both air-filled pores and active film dielectrics while cumulative re-
sistance is shown by R, acting also as light function represented in Eq.
(3) [39].

=

+

Z R
1 jωRC (3)

where ω represents the angular frequency. When there is increment in
the charges concentration it effects the permittivity of the materials. In
our case with increase in intensity of light, there was decrease in im-
pedance and increase in the capacitance, similar results were also ob-
served in literature [40,41]. The capacitance of the absorbent layer is
highly sensitive to its polarizabilities which can be in form of electronic
(αe), dipolar (αdip) and ionic (αi) [42]. However another type of polar-
izability is due to transfer (αtr) of charge carriers [43,44]. It should be
differentiated that αe is due to the orbital electron’s relative displace-
ment, where αtr occurs due to charges which participates in process of
conduction.

In [42], if only αtr (due to electrons and holes) is considered, then
Clausius-Mosotti relation can be represented as in Eq. (4).

−

+

=
ε
ε

Nα
ε

1
2 3

tr

0 (4)

where ε is the relative permittivity, N is the total concentration of
charge carriers, and ε0is the permittivity of free space.

Furthermore, the impedance- and capacitance-frequency char-
acteristics were measured at different light intensities and results
showed a response in decreasing response of electric parameters as was
seen from Eq. (3). Fig. 7. Represents that the impedance of FTO/
PEDOT: PSS/Perovskite/PC61BM/CdS/Ag samples is dependent on
frequency at different intensities of the light. Results shows that with an
increment in frequency, the decrease in impedance by a factor of
191.66 (intensity of light= 0), 160.11 (intensity of light= 100),
131.42 (intensity of light= 200), 98.26 (intensity of light= 300), and
80.23 (intensity of light= 325), times observed respectively.

Fig. 8 shows the dependence of the capacitance of the samples on
frequency at different intensities of light. It is seen that as frequency
increases the capacitance decreases 3.78 (intensity of light= 0), 3.826
(intensity of light= 100), 4.03 (intensity of light= 200), 4.65 (in-
tensity of light= 300) and 4.63 (intensity of light= 325) times. The
results showed that in range from 100 Hz to 200 kHz the impedance
sensitivity in Ω/Hz is −343.37 (light intensity= 0), −283.36 (light
intensity= 100W/m2), −228.36 (light intensity= 200W/m2),
−168.35 (light intensity= 300W/m2) and −138.324 (light in-
tensity= 325W/m2), respectively. While the capacitance sensitivity in
pF/kHz is −26.86 (light intensity= 0), −27.71 (light in-
tensity= 100W/m2), −30.09 (light intensity= 200W/m2), −36.51
(light intensity= 300W/m2) and −37.27 (light intensity= 325W/
m2), respectively.

Fig. 4. The impedance-light intensity characterization at varying frequencies of
perovskite based samples.

Fig. 5. The capacitance-light intensity characterization at varying frequencies
of the perovskite based samples.

Table 1
Sensitivity under effect of light intensity of perovskite based photodetector with
varying frequencies.

Frequency SZ G/ SC G/
kHz kΩm2/W pFm2/W

0.100 −27.95 265
1 −6.965 17.0
10 −1.290 10.3
100 −0.525 2.20
200 −0.380 1.40
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The relationships shown in Figs. 7 and 8 can be explained by the
increase of the reactive currents through the capacitance with respect to
the active current through the resistance. On the other hand, at higher
frequencies, the frequency-resistance relationship can be explained by
the frequency dependence of the mobility of the charges which was also
investigated in Ref. [45]. The sensitivity decreases with the increase of
frequency is due to the fact that at lower frequencies charges get time to

settle down while at higher frequencies the settling time is insufficient,
hence as a result sensitivity decreased, respectively. The response and
recovery time is 7 sec and 9 sec as observed in Fig. 9.

Perovskite-based solar cell degradation is one of the major issues
but if we can utilize these materials for some other applications where
their degradation have almost no impact on the electric parameters,
then it will help in finding the ways to utilize perovskite materials by
one way or other. We hope that the fabrication and investigation of
perovskite samples for light sensor will be interesting for different ap-
plications in instrumentation and electronics.

Conclusions

In this work, we described the fabrication and investigation of
electric properties on light for perovskite sensor. The sensor has sand-
wich-surface type structure FTO/PEDOT:PSS/Perovskite/PC61BM/CdS/
Ag. Investigation of the impedance and capacitance at 100 Hz, 1 kHz,
10 kHz, 100 kHz and 200 kHz of the FTO/PEDOT:PSS/Perovskite/
PC61BM/CdS/Ag samples. Under effect of light varying from dark
condition to 325W/m2 showed that there is a decrement in impedance
as the photo intensity increased whereas the capacitances of the sam-
ples increased. The increase of the frequency of the applied voltage
results in a decrease in the impedance and capacitance of the photo-
detector.

The change in impedance and capacitance of the samples with the
increase of intensity of the light can be explained by generation of the
electron-hole pairs and increase of the concentration of charges. These
sensors can prove valuable in the field of instrumentation, electronics
and photonics.

Fig. 6. (a) Equivalent circuit of FTO/PEDOT–PSS/Perovskite/PCBM/CdS/Ag sensor and (b) its simplified.

Fig. 7. The dependences of the impedance of the FTO/PEDOT:PSS/Perovskite/
PC61BM/CdS/Ag samples on frequency at different intensities of light.

Fig. 8. Capacitance-frequency relationship of FTO/PEDOT:PSS/Perovskite/
PC61BM/CdS/Ag samples at different light intensities.

Fig. 9. Capacitive transient response of FTO/PEDOT:PSS/Perovskite/PC61BM/
CdS/Ag sensor under pulsed light intensities signal (from 50W/m2 to 300W/
m2) and 100 Hz frequency.
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