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Abstract: The automatic traffic sign detection and recognition (TSDR) system is very important
research in the development of advanced driver assistance systems (ADAS). Investigations on
vision-based TSDR have received substantial interest in the research community, which is mainly
motivated by three factors, which are detection, tracking and classification. During the last decade,
a substantial number of techniques have been reported for TSDR. This paper provides a comprehensive
survey on traffic sign detection, tracking and classification. The details of algorithms, methods and
their specifications on detection, tracking and classification are investigated and summarized in the
tables along with the corresponding key references. A comparative study on each section has been
provided to evaluate the TSDR data, performance metrics and their availability. Current issues and
challenges of the existing technologies are illustrated with brief suggestions and a discussion on
the progress of driver assistance system research in the future. This review will hopefully lead to
increasing efforts towards the development of future vision-based TSDR system.

Keywords: Traffic sign detection and tracking (TSDR); advanced driver assistance system (ADAS);
computer vision

1. Introduction

In all countries of the world, the important information about the road limitation and condition is
presented to drivers as visual signals, such as traffic signs and traffic lanes. Traffic signs are an important
part of road infrastructure to provide information about the current state of the road, restrictions,
prohibitions, warnings, and other helpful information for navigation [1,2]. This information is encoded
in the traffic signs visual traits: Shape, color and pictogram [1]. Disregarding or failing to notice
these traffic signs may directly or indirectly contribute to a traffic accident. However, in adverse
traffic conditions, the driver may accidentally or deliberately not notice traffic signs [3]. In these
circumstances, if there is an automatic detection and recognition system for traffic signs, it can
compensate for a driver’s possible inattention, decreasing a driver’s tiredness by helping him follow
the traffic sign, and thus, making driving safer and easier. Traffic sign detection and recognition (TSDR)
is an important application in the more recent technology referred to as advanced driver assistance
systems (ADAS) [4], which is designed to provide drivers with vital information that would be difficult
or impossible to come by through any other means [5]. The TSDR system has received an increasing
interest in recent years due to its potential use in various applications. Some of these applications
have been well defined and summarized in [6] as checking the presence and condition of the signs
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on highways, sign inventory in towns and cities, re-localization of autonomous vehicles; as well as
its use in the application relevant to this research, as a driver support system. However, a number
of challenges remain for a successful TSDR systems; as the performance of these systems is greatly
affected by the surrounding conditions that affect road signs visibility [4]. Circumstances that affect
road signs visibility are either temporal because of illumination factors and bad weather conditions or
permanent because of vandalism and bad postage of signs [7]. Figure 1 shows an example of some
non-ideal invariant traffic signs. These non-identical traffic signs cause difficulties for TSDR.
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Aiming at standardizing traffic signs across different countries, an international treaty, 
commonly known as the Vienna Convention on Road Signs and Signals [8], was agreed upon in 
1968. To date, 52 countries have signed this treaty, among which 31 are in Europe. The Vienna 
convention classified the traffic signs into eight categories, designated with letters A–H: 
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Figure 2. Examples of traffic signs: (a) A danger warning sign, (b) a priority sign, (c) a prohibitory 
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Despite the well-defined laws in the Vienna Treaty, variations in traffic sign designs still 
exist among the countries’ signatories to the treaty, and in some cases considerable variation 
within traffic sign designs can exist within the nation itself. These variations are easier to be 
detected by humans, nevertheless, they may pose a major challenge to an automatic detection 
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Figure 1. Non-identical traffic signs: (a) Partially occluded traffic sign, (b) faded traffic sign, (c) damaged
traffic sign, (d) multiple traffic signs appearing at a time.

This paper provides a comprehensive survey on traffic sign detection, tracking and classification.
The details of algorithms, methods and their specifications on detection, tracking and classification are
investigated and summarized in the tables along with the corresponding key references. A comparative
study on each section has been provided to evaluate the TSDR methods, performance metrics and
their availability. Current issues and challenges of the existing technologies are illustrated with brief
suggestions and a discussion on the progress of driver assistance system research in the future. The rest
of this paper is organized as follows: In Section 2, an overview on traffic signs and recent trends of the
research in this field is presented. This is followed by providing a brief review on the available traffic
sign databases in Section 3. The methods of detection, tracking, and classification are categorized,
reviewed, and compared in Section 4. Section 5 revises current issues and challenges facing the
researchers in TSDR. Section 5 summarizes the paper, draws the conclusion and suggestions.

2. Traffic Signs and Research Trends

Aiming at standardizing traffic signs across different countries, an international treaty, commonly
known as the Vienna Convention on Road Signs and Signals [8], was agreed upon in 1968. To date,
52 countries have signed this treaty, among which 31 are in Europe. The Vienna convention classified the
traffic signs into eight categories, designated with letters A–H: Danger/warning signs (A), priority signs
(B), prohibitory or restrictive signs (C), mandatory signs (D), special regulation signs (E), information,
facilities or service signs (F), direction, position or indication signs (G), and additional panels (H).
Examples of traffic signs in the United Kingdom for each of the categories are shown in Figure 2.
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Figure 2. Examples of traffic signs: (a) A danger warning sign, (b) a priority sign, (c) a prohibitory sign,
(d) a mandatory sign, (e) a special regulation sign, (f) an information sign, (g) a direction sign and (h)
an additional panel.

Despite the well-defined laws in the Vienna Treaty, variations in traffic sign designs still exist
among the countries’ signatories to the treaty, and in some cases considerable variation within traffic
sign designs can exist within the nation itself. These variations are easier to be detected by humans,
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nevertheless, they may pose a major challenge to an automatic detection system. As an example,
different designs of stop signs in different countries are shown in Table 1.

Table 1. Example of stop signs in different countries.

Country US Japan Pakistan Ethiopia Libya New Guinea

Sign
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In terms of research, recently there has been a growing interest in developing efficient and reliable
TSDR systems. To show the current state of scientific research regarding this development, a simple
search of the term “traffic sign detection and recognition” in the Scopus database has been carried
out, with the aim of locating articles published in journals indexed in this database. To focus on
the recent and most relevant research, the search has been restricted to the past decade (2009–2018)
and only in the subjects of computer science and engineering. In this way, a set of 674 articles and
5414 citations were obtained. The publication and citation trends are shown in Figures 3 and 4,
respectively. Generally, the figures indicate a relatively fast growth rate in publications and a rapid
increase in citation impact. More importantly, it is clear from the figures that TSDR research has grown
remarkably in the last three years (2016–2018), with the highest number of publications and citations
representing 41.69% and 60.34%, respectively.

Sensors 2019, 19, x FOR PEER REVIEW 3 of 30  

 

system. As an example, different designs of stop signs in different countries are shown in Table 
1. 

Table 1. Example of stop signs in different countries. 

Country US Japan Pakistan  Ethiopia  Libya New Guinea 

Sign 

      

In terms of research, recently there has been a growing interest in developing efficient and 
reliable TSDR systems. To show the current state of scientific research regarding this development, a 
simple search of the term “traffic sign detection and recognition” in the Scopus database has been 
carried out, with the aim of locating articles published in journals indexed in this database. To focus 
on the recent and most relevant research, the search has been restricted to the past decade (2009–
2018) and only in the subjects of computer science and engineering. In this way, a set of 674 articles 
and 5414 citations were obtained. The publication and citation trends are shown in Figures 3 and 4, 
respectively. Generally, the figures indicate a relatively fast growth rate in publications and a rapid 
increase in citation impact. More importantly, it is clear from the figures that TSDR research has 
grown remarkably in the last three years (2016–2018), with the highest number of publications and 
citations representing 41.69% and 60.34%, respectively. 

 
Figure 3. Trends of research for a traffic sign detection and recognition (TSDR) topic based on 
Scopus analysis tools. 

 

Figure 4. Trends of citations for a TSDR topic based on Scopus analysis tools. 

3. Traffic Sign Database 

A traffic sign database is an essential requirement in developing any TSDR system. It is used for 
training and testing the detection and recognition techniques. A traffic sign database contains a large 
number of traffic sign scenes and images representing samples of all available types of traffic signs: 
Guide, regulatory, temporary and warning signs. During the past few years, a number of research 
groups have worked on creating traffic sign datasets for the task of detection, recognition and 

Figure 3. Trends of research for a traffic sign detection and recognition (TSDR) topic based on Scopus
analysis tools.

Sensors 2019, 19, x FOR PEER REVIEW 3 of 30  

 

system. As an example, different designs of stop signs in different countries are shown in Table 
1. 

Table 1. Example of stop signs in different countries. 

Country US Japan Pakistan  Ethiopia  Libya New Guinea 

Sign 

      

In terms of research, recently there has been a growing interest in developing efficient and 
reliable TSDR systems. To show the current state of scientific research regarding this development, a 
simple search of the term “traffic sign detection and recognition” in the Scopus database has been 
carried out, with the aim of locating articles published in journals indexed in this database. To focus 
on the recent and most relevant research, the search has been restricted to the past decade (2009–
2018) and only in the subjects of computer science and engineering. In this way, a set of 674 articles 
and 5414 citations were obtained. The publication and citation trends are shown in Figures 3 and 4, 
respectively. Generally, the figures indicate a relatively fast growth rate in publications and a rapid 
increase in citation impact. More importantly, it is clear from the figures that TSDR research has 
grown remarkably in the last three years (2016–2018), with the highest number of publications and 
citations representing 41.69% and 60.34%, respectively. 

 
Figure 3. Trends of research for a traffic sign detection and recognition (TSDR) topic based on 
Scopus analysis tools. 

 

Figure 4. Trends of citations for a TSDR topic based on Scopus analysis tools. 

3. Traffic Sign Database 

A traffic sign database is an essential requirement in developing any TSDR system. It is used for 
training and testing the detection and recognition techniques. A traffic sign database contains a large 
number of traffic sign scenes and images representing samples of all available types of traffic signs: 
Guide, regulatory, temporary and warning signs. During the past few years, a number of research 
groups have worked on creating traffic sign datasets for the task of detection, recognition and 

Figure 4. Trends of citations for a TSDR topic based on Scopus analysis tools.

3. Traffic Sign Database

A traffic sign database is an essential requirement in developing any TSDR system. It is used
for training and testing the detection and recognition techniques. A traffic sign database contains
a large number of traffic sign scenes and images representing samples of all available types of traffic
signs: Guide, regulatory, temporary and warning signs. During the past few years, a number of
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research groups have worked on creating traffic sign datasets for the task of detection, recognition and
tracking. Some of these datasets are publicly available for use by the research community. The detailed
information regarding the publicly available databases are summarized Table 2. According to [1,9],
the first and most widely used dataset is the German traffic sign dataset, which has two datasets:
The German Traffic Signs Detection Benchmark (GTSDB) [10] and German Traffic Signs Recognition
Benchmark (GTSRB) [11]. This dataset collects three important categories of road signs (prohibitory,
danger and mandatory) from various traffic scenes. All traffic signs have been fully annotated with the
rectangular regions of interest (ROIs). Examples of traffic scenes in the GTSDB database are shown
in Figure 5 [12].

Table 2. Publicly available traffic sign databases [13].

Dataset Country Classes TS
Scenes TS Images Image Size (px) Sign Size (px) Include Videos

GTSDRB
(2012 and 2013) Germany 43 9000 39,209 (training),

12,630 (testing) 15 × 15 to 250 × 250 15 × 15 to 250 × 250 No

KULD
(2009) Belgium 100+ 9006 13,444 1628 × 1236 100 × 100 to 1628 × 1236 Yes, 4 tracks

STSD
(2011) Sweden 7 20,000 3488 1280 × 960 3 × 5 to 263 × 248 No

RUGD
(2003)

The
Netherlands 3 48 48 360 × 270 N/A No

Stereopolis
(2010) France 10 847 251 1920 × 1080 25 × 25 to 204 × 159 No

LISAD
(2012) US 49 6610 7855 640 × 480 to 1024 × 52 6 × 6 to 167 × 168 All annotations

UKOD
(2012) UK 100+ 43,509 1200 (synthetic) 648 × 480 24 × 24 No

RTSD
(2013) Russia 140 N/A 80,000+

(synthetic) 1280 × 720 30 × 30 No
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4. Traffic Sign Detection, Tracking and Classification Methods

As aforementioned, a TSDR is a driver supportive system that can be used to notify and warn the
driver in adverse conditions. This system is a vision-based system that usually has the capability to
detect and recognize all traffic signs, even those signs that may be partially occluded or somewhat
distorted [14]. Its main tasks are locating the sign, identifying it and distinguishing one sign from
another [15,16]. Thus, the procedure of the TSDR system can be divided into three stages, the detection,
tracking and classification stages. Detection is concerned with locating traffic signs in the input scene
images, whereas classification is about determining what type of sign the system is looking at [17,18].
In other words, traffic sign detection involves generating candidate region of interests (ROIs) that are
likely to contain regions of traffic signs, while traffic sign classification gets each candidate ROI and tries
to identify the exact type of sign or rejects the identified ROI as a false detection [4,19]. Detection and
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classification usually constitute recognition in the scientific literature. Figure 6 illustrates the main
stages of the traffic sign recognition system. As indicated in the figure, the system is able to work in
two modes, the training mode in which a database can be built by collecting a set of traffic signs for
training and validation, and a testing mode in which the system can recognize a traffic sign which has
not been seen before. In the training mode, a traffic sign image is collected by the camera and stored
in the raw image database to be classified and used for training the system. The collected image is
then sent to color segmentation process where all background objects and unimportant information
in the image are eliminated. The generated image from this step is a binary image containing the
traffic sign and any other objects similar to the color of the traffic sign. The noise and small objects in
the binary image are cleaned by the object selector process and the generated image is then used to
create or update the training image database. According to [20], feature selection has two functions in
enhancing the performances of learning tasks. The first function is to eliminate noisy and redundant
information, thus getting a better representation and facilitating the classification task. The second
function is to make the subsequent computation more efficient through lowering the feature space.
In the block diagram, the features are then extracted from the image and used to train the classifier in
the subsequent step. In testing mode, the same procedure is followed, but the extracted features are
used to directly classify the traffic sign using a pre-trained classifier.
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Tracking is used by some research in order to improve the recognition performance [21]. The three
stages of a TSDR system are shown in Figure 7, and further discussed in the subsequent sections.
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4.1. Detection Phase

The initial stage in any TSDR system is locating potential sign image regions from a natural scene
image input. This initial stage is called the detection stage, in which a ROI-containing traffic sign ise
actually localized [17,23,24]. Traffic signs usually have a strict color scheme (red, blue, and white)
and specific shapes (round, square, and triangular). These inherent characteristics distinguish
them from other outdoor objects making them suitable to be processed by a computer vision system
automatically, thus, allow the TSDR system to distinguish traffic signs from the background scene [21,25].
Therefore, traffic sign detection methods have been traditionally classified into color-based, shape-based
and hybrid (color–shape-based) methods [23,26]. Detection methods are outlined in Figure 8 and
compared in the following subsections.
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4.1.1. Color-Based Methods

Color-based methods take advantage of the fact that traffic signs are designed to be easily
distinguished from their surroundings, often colored in highly visible contrasting colors [17].
These colors are extracted to detect ROI within an input image based on different image-processing
methods. Detection methods based on the color characteristics have low computing, good robustness
and other characteristics, which can improve the detection performance to a certain extent [25].
However, methods based on color information can be used with a high-resolution dataset but not with
grayscale images [23]. In addition, the main problem with using the color parameter is its sensitivity
to various factors such as the distance of the target, weather conditions, time of the day, as well as
reflection, age and condition of the signs [17,23].

In color-based approaches, the captured images are partitioned into subsets of connected pixels
that share similar color properties [26]. Then the traffic signs are extracted by color thresholding
segmentation based on smart data processing. The choice of color space is important during the
detection phase, hence, the captured images are usually transformed into a specific color space where
the signs are more distinct [9]. According to [27], the developed color-based detection methods
are based on the red, green, blue (RGB) color space [28–30], the hue, saturation, and value (HSV)
color space [31,32], the hue, saturation, and intensity (HSI) color space [33] and various other color
spaces [34,35]. The most common color-based detection methods are represented in Figure 9 and
reviewed respectively in Table 3.
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Color thresholding segmentation is one of the earliest techniques used to segment digital
images [26]. Generally, it is based on the assumption that adjacent pixels whose value (grey level,
color value, texture, etc.) lies within a certain range belong to the same class [36]. Normal color
segmentation was used for traffic sign detection by Varun et al. [37] with their own created dataset,
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containing 2000 test images, resulting in an accuracy level of 82%. The efficiency was improved
in [38] by using color segmentation followed by a color enhancement method. In recent research,
color thresholding has commonly been used for pre-processing purposes [39,40]. In [39], pre-filtering
was used to train a color classifier, which created a regression problem, whose core was to find a linear
function, as shown in (1).

f (x) = (w, x) + b, x = (v1, v2, v3)
i (1)

where vi is the intensity value of ith channel (i = 1, 2, 3 for a three-channel RGB image), (w, b) ∈ <×<
are parameters that control the function and the decision rule is given by sgn( f (x)). In [40],
Vazquez-Reina et al. used RGB to HSI color space conversion with the additional feature of white sign
detection. The main advantage of this feature is its illuminated sign detection. In Refs. [33,41–45],
HSI/HSV transformation approach was used for the purpose of detection. The major advantages of the
HSI color space over the RGB color space are that it has only two components, hue and saturation,
both are very similar to human perception and it is more immune to lighting conditions. In [33], a simple
RGB to HSI color space transformation is used for the TSDR purpose. In [44], the HSI color space was
used for detection, and then, the detected signal was passed to the distance to borders (DtBs) feature
for shape detection to increase the accuracy level. The average accuracy was approximately 88.4% on
GRAM database. The main limitation of using HSV transformation is the strong hue dependency of
brightness. Hue is only a measurement of the physical lightness of a color, not the perceived brightness.
Thus, the value of a fully saturated yellow and blue is the same.

Region growing is another simple and popular technique used for detection in TSDR systems.
Region growing is a pixel-based image segmentation method that starts by selecting a starting point or
seed pixel. Then, the region develops by adding neighboring pixels that are uniform, according to
a certain match criterion, increasing step-by-step the size of the region [46]. This method was used by
Nicchiotti et al. [47] and Priese et al. [48] for TSDR. Its efficiency was not very high, approximately 84%.
Because this method is dependent on seed values, problems can occur when the seed points lie on
edges, and, if the growth process is dominated by the regions, uncertainty around edges of adjacent
regions may not be resolved correctly.

The color indexing method is another simple method that identifies objects entirely on the basis
of color [49]. It was developed by Swain and Ballard [50] and was used by researchers in the early
1990s. In this method, a comparison of any two colored images is done by comparing their color
histogram. For a given pair of histograms, I and M, each containing n bins, the histogram intersections
are defined as [50]:

n∑
j=1

min
(
I j, M j

)
. (2)

The match value is then,

H(I, M) =

n∑
j=1

min
(
I j, M j

)
n∑

j=1
M j

. (3)

The advantage of using color histograms is their robustness with respect to geometric changes of
projected objects [51]. However, color indexing is segmentation dependent, and complete, efficient and
reliable segmentation cannot be performed prior to recognition. Thus, color indexing is negatively
characterized as being an unreliable method.

Another approach to color segmentation is called a dynamic pixel aggregation [52]. In this
method, the segmentation process is accomplished by introducing a dynamic thresholding to the pixel
aggregation process in the HSV color space. The applied threshold is independent in terms of linearity
and its value is defined as [52],

a = k− sin(sseed) (4)
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where, k is the normalization parameter and Sseed is the seed pixel saturation. The main advantage
of this approach is hue instability reduction. However, it fails to reduce other segmentation-based
problems, such as fading and illumination. This method was tested in [52] on their own created
database with 620 outdoor images, resulting in an accuracy level approximately 86.3 to 95.7%.

The International Commission on Illumination 1997 Interim Color Appearance Model (CIECAM97)
appearance model is another method has been used to detect and extract color information and to
segment and classify traffic signs. Generally, color appearance models are capable of predicting color
appearance under a variety of viewing conditions, including different light sources, luminance levels,
surrounds, and lightness of backgrounds [53]. This model was used by Gao et al. [54] to transform
the image from RGB to (International Commission on Illumination) CIE XYZ values. The main
drawback of this model is its chromatic-adaptation transform, which is called the Bradford transform,
where chromatic blues appear purple as the chroma is reduced at a constant hue angle.

Table 3. Colors based approaches for TSDR system.

Techniques Paper Segmentation Methods Advantages Sign Type No. of Test
Images

Test Image
Type

Color
Thresholding
Segmentation

[37] RGB color segmentation Simple Any color 2000 N/A

[38] RGB color segmentation with
enhancement of color

Fast and high
detection rate

Red, blue,
yellow 135 Video data

HSI/HSV
Transform

[40] HSI thresholding with addition for
white signs

Segments adversely
illuminated signs Any color N/A High-res

[33] HSI color-based segmentation Simple and fast Any color N/A N/A

[41] RGB to HSI transformation Segments adversely
illuminated signs Any color N/A Low-res

[42] RGB to HSI transformation N/A Red N/A Low-res

[43] RGB to HSI transformation N/A Any color 3028 Low-res

[44] HSI color-based segmentation Simple and high
accuracy rate Red, blue N/A Video data

[45] HSI color-based segmentation Simple and real time
application Any color 632 High-res

Region Growing [48] Started with seed and expand to
group pixels with similar affinity N/A N/A N/A N/A

[47] N/A N/A High-res

Color Indexing [50] Comparison of two any-color images
is done by comparing their

color histogram

Straightforward, fast
method

Any color N/A Low-res

[49] Any color N/A N/A

Dynamic Pixel
Aggregation [52] Dynamic threshold in pixel

aggregation on HSV color space
Hue instability

reduced Any color 620 Low-res

CIECAM97
Model [54]

RGB to CIE XYZ transformation,
then to LCH space using

CIECAM97 model

Invariant in different
lighting conditions Red, blue N/A N/A

YCbCr Color
Space

[55] RGB to YCbCr transformation then
dynamic thresholding is performed
in Cr component to extract red object

Simple and high
accuracy Red 193 N/A

[56] High accuracy less
processing time Any color N/A Low-res

The Green (Y), Blue (Cb), Red (Cr) (YCbCr) color space has been considered in recent approaches.
Different from the most common color space RGB, which represents color as red, green and blue,
YCbCr represents color as brightness and two-color difference signals. It was used for detection
in [55], showing an accuracy level over 93% on their own collected database. The efficiency was
improved to approximately 97.6% in [56] by first transforming RGB color space to YCbCr color space,
then segmenting the image and performing shape-based analysis.

4.1.2. Shape-Based Methods

Just as traffic signs have specific colors, they also have very well-defined shapes that can be
searched for. Shape-based methods ignore the color in favor of the characteristic shape of signs [17].
Detection of a traffic sign via its shape follows the defining algorithm of shape detection i.e., to finding
the contours and approximating it to reach a final decision based on the number of contours [15,23].
Shape detection is preferred for traffic signs recognition as the colors found on traffic signs changes
according to illumination. In addition, shape detection reduces the search for a road sign regions



Sensors 2019, 19, 2093 9 of 28

from the whole image to a small number of pixels [57]. However, for this method the memory and
computational requirement is quite high for large images [58]. In addition, damaged, partially obscured,
faded and blurred traffic signs may cause difficulties in detecting traffic signs accurately, leading to
a low accuracy rate. Detection of the traffic signs in these methods is made from the edges of the image
analyzed by structural or comprehensive approaches [23]. Many shape-based methods are popular in
TSDR systems. These methods are represented in Figure 10 and reviewed respectively in Table 4.
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The most common shape-based approach is the Hough transformation. The Hough transformation
usually isolates features of a particular shape within a given frame/images [15]. It was applied by
Zaklouta et al. in [59] to detect triangular and circular signs. Their own test datasets contained
14,763 and 1584 signs, and the accuracy rate was approximately 90%. The main advantage of the
Hough transformation technique is that it is tolerant of gaps in feature boundary descriptions and
is relatively unaffected by image noise [60]. However, its main disadvantage is the dependency on
input data. In addition, it is only efficient for a high number of votes that fall in the correct bin.
When the parameters are large, the average number of votes cast for a single bin becomes low, and thus,
the detection rate is decreased.

Another shape-based detection method is the similarity detection. In this method the detection
is performed by computing a similarity factor between a segmented region and set of binary image
samples representing each road sign shape [57]. This method was used by Vitabile et al. [52] on
their collected dataset with an accuracy level over 86.3%. The main advantage of this method is its
straightforwardness, whilst its main drawback is that the input image should be perfectly segmented
and the dimensions have to be same. In [52], the images were initially converted from RGB to HSV,
then they were segmented and resized into 36 × 36 pixels. The similarity detection equation is,

x′ =
x− xmin

xmax − xmin
.ny′ =

y− ymin

ymax − ymin
.n (5)

where, xmax, ymax, xmin and ymin are the coordinates of the rectangle vertices.
Distance transform matching (DTM) is also another type of shape-based detection method. In this

method, the distance transform of the image is formed by assigning each non-edge pixel a value that is
a measure of distance to the nearest edge pixel. It was used by Gavrila [61] to capture large variations
in object shape by identifying the template features to the nearest feature image from a distribution of
distances. This distance is inversely proportional to the matching of the image and the templates of the
images. The chamfer distance equation is:

Dcham f er(T, I) ≡
1
T

∑
t∈T

dI(t) (6)

where |T| and dI(t) denote the number of features and the distance between features t in T and the
closest feature in I, respectively. In his experiment, Gavrila [61] used DTM to examine 1000 collected
test images, and the accuracy was approximately 95%. The DTM technique is efficient for detecting
arbitrary shapes within images. However, its main disadvantage is the vulnerability of detecting
cluttered images.

Another popular two colorless traffic sign detection methods are edge detection features and
Haar-like features. Edge detection refers to the process of identifying and locating sharp discontinuities
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in an image [62]. By using this method, image data is simplified for the purpose of minimizing the
amount of data to be processed. This method was used in [63–67] for indicating the boundaries of
objects within the image through finding a set of connected curves. The Haar-like features method
was proposed by Paul Viola and Michael Jones [68] based on the Haar wavelet to recognize the target
objects. As indicated in Table 4, the Haar-like features based detection method was used in [69,70] for
traffic sign detection. The main advantage is its calculating speed, where any size of images can be
calculated in a constant time. However, its weakness is the requirement of a large number of training
images and high false positive rates [23].

4.1.3. Hybrid Methods

As previously discussed, both color-based and shape-based methods have some advantages and
disadvantages. Therefore, researchers recently have tried to improve the efficiency of the TSDR system
using a combination of color- and shape-based features. In the hybrid methods, either color-based
approaches take shape into account after having looked at colors, or shape detection is used as the main
method but integrate some color aspects as well. In color-based approaches a two-stage strategy is
usually employed. First, segmentation is done to narrow the search space. Subsequently, shape detection
is implemented and is applied only to the segmented regions [58]. Color and shape features were
combined into traffic sign detection algorithms in studies [71–76]. In these studies, different signs with
various colors and shapes were detected using different datasets.
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Table 4. Shape-based methods for TSDR system.

Technique Paper Overall Process Recognition
Feature Advantages Sign Type No. of Test Image Test Image Type

Hough Transform

[77]

Each pixel of edge image votes for
the object center at object boundary

N/A Invariant to in-plane rotation and
viewing angle

Octagon, square,
triangle 45 Low-res

[78] AdaBoost High accuracy Any sign N/A Low-res

[79] N/A
Robustness to illumination, scale,
pose, viewpoint change and even

partial occlusion

Red (circular),
blue (square) 500+ Low-res

[80] N/A
Reducing memory consumption and

increasing utilization
Hough-based SVM

Any sign 3000 High-res

[81] N/A Robustness Red (circular) N/A 768 × 580

[59] Random Forest Improve efficiency of K-d tree,
random forest and SVM Triangular and circular 14,763 752 × 480 px

[82] SIFT and SURF
based MLP Applying another state refinement Red circular N/A Video data

Similarity
Detection [52]

Computes a region and sets binary
samples for representing each traffic

sign shape.
NN Straight forward method Any color 620 Low-res

DTM [61] Capturing object shape by
template hierarchy. RBF Network Detects objects of arbitrary shape Circular and triangular 1000 360 × 288 px

Edge Detection
Feature

[63]
A set of connected curves is found
which indicates the boundaries of

objects within the image.

Geometric
matching

Invariant in translation,
rotation and scaling Any color 1000 640 × 480

[64] Normalized cross
correlation

Reliability and high accuracy in
real time Speed limit sign N/A 320 × 240 px video data

[65] N/A Improved accuracy by training
negative sample Red (circular) 3907 Low-res

[66] N/A Invariant in noise and lighting Triangle, circular 847 High-res

[67] CDT Invariant in noise and illumination Red, blue, yellow

Edges with
Haar-like
Features

[69] Sums three pixel intensities and
calculates the difference of sums by

Haar-like features

CDT Smoother and noise invariant Rectangular, any color Video data

[70] SVM Fast method
Circular, triangular

upside-down,
rectangle and diamond

640 × 480 px video data
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4.2. Tracking Phase

For robust detection and in order to increase the accuracy of the information used in identifying
traffic signs, the signs are tracked using a simple motion model and temporal information propagation.
This tracking process is very important for real-time applications, by which the TSDR system verifies
correctness of the traffic sign and keeps tracking the sign to avoid handling the same detected sign more
than once [21,83]. The tracking process is performed by feeding the TSDR system with a video recorded
by a camera fixed on the vehicle and monitoring the sign candidates on a number of consecutive
frames. The accepted sign candidates are only those shown up more than once. If the object is not
a traffic sign or a sign that only shows up once, it can be eliminated as soon as possible, and thus,
the computation time of the detection task can be reduced [84]. According to [85] and as shown in
Table 5, the most common tracker adapted is the Kalman filter, as in [82,85–88]. The block diagram
of a TSDR system with a tracking process based on the Kalman filter as proposed in [82] is shown in
Figure 11. In the figure, SIFT, CCD and MLP are abbreviations of scale-invariant feature transform,
contracting curve density and multi-layer perceptrons, respectively.

Table 5. Sign tracking based on Kalman Filter approaches.

Technique Paper Advantages Performance

Kalman Filter

[82]
For avoiding incorrect assignment,

rule-based approach utilizing combined
distance direction difference is used.

N/A

[89] Takes less time in tracking and verifying Using 320 × 240 pixel images,
takes 0.1 s to 0.2 s.

[88] Used stereo parameters to reduce the error
of stereo measurement N/A

Advanced Kalman Filter [85] Fast and advanced method, high detection
and tracking rate

Using 400 × 300 pixel images,
can process 3.26 frames

per second.
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Figure 11. An example of a TSDR system includes tracking process based on Kalman filter [81].

4.3. Classification Phase

After the localization of ROIs, classification techniques are employed to determine the content
of the detected traffic signs [1]. Understanding the traffic rule enforced by the sign is achieved by
reading the inner part of the detected traffic sign using a classifier method. Classification algorithms
are neither color-based nor shape-based. The classifier usually takes a certain set of features as the
input, which distinguishes the candidates from each other. Different algorithms are used to classify the
traffic signs swiftly and accurately. Some conventional methods used for classification of traffic signs
are outlined in Figure 12 and reviewed respectively in Tables 6–13.
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Table 6. Examples of TSDR systems using a template matching method.

Ref Detection Feature Advantages
True

Positive
Rate

False
Positive

Rate

No. of
Test

Images

Overall
Accuracy Time

[90] RGB to HSV then
contrast stretching Fast and straight

forward method
N/A N/A N/A <95% N/A

[91] N/A N/A N/A 100 90.9% N/A

Template matching is a common method in image processing and pattern recognition. It is
a low-level approach which uses pre-defined templates to search the whole image pixel by pixel
or to perform the small window matching [15]. It was used for TSDR by Ohara et al. [90] and
Torresen et al. [91]. It has the advantages of being fast, straightforward and accurate (with a hit rate of
approximately 90% on their own pictured images dataset). However, the drawback of this method is
that it is very sensitive to noise and occlusions. In addition, it requires a separate template for each scale
and orientation. Examples of TSDR systems using a template matching method are shown in Table 6.

Another common classification method is the random forest. It is a machine learning method that
operates by constructing a multitude of decision trees during the training time and outputting the class
that is the mode of the output of the class of individual trees. This method was compared in [92,93] with
SVM, MLP, Histogram of Oriented Gradient (HOG)-based classifiers, showing the highest accuracy
rate and the lowest computational time. Based on their own dataset, the accuracy was approximately
94.2%, whereas the accuracy of the SVM is 87.8% and that of MLP is 89.2%. In terms of computational
time for a single classification, the SVM takes 115.87 ms, MLP takes 1.45 ms, and a decision tree takes
0.15 ms. Despite its high accuracy and low computation time, the main limitation of a random forest
is that a large number of trees can make the algorithm slow and ineffective for real-time predictions.
Examples of TSDR systems using a decision tree method are shown in Table 7.

Table 7. Examples of TSDR systems using a decision tree method.

Ref Detection Feature Advantages
True

Positive
Rate

False
Positive

Rate

No. of
Test

Images

Overall
Accuracy Time Dataset

[94]
HOG based SVM

Used GTSRB and ETH 80 dataset
and compared 90.9% N/A 12,569 90.46% 17.9 ms GTSRB and

ETH 80

[95,96]
Used Gaussian weighting in

HOG to improve performance
by 15%

90% N/A 12,569 97.2% 17.9 ms Own created

[92] MSER based HOG
Eliminating hand labeled

database, robust to various
lighting and illumination

83.3% 0.85
640 × 480
px video

data
87.72% N/A Own created

[97] HOG Remove false alarm up to 94% N/A N/A 12,569 92.7% 17.9 ms Own created

Table 8. Examples of TSDR systems using a genetic algorithm.

Ref Detection
Feature Advantages

True
Positive

Rate

False
Positive

Rate

No. of
Test

Images

Overall
Accuracy Time

[98,99] Genetic
Algorithm

Unaffected by
illumination problem N/A N/A Video data N/A N/A

Genetic algorithm is another classification method. It is based on a natural selection process
that mimics biological evolution, which was used early in this century. This method was used for
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traffic sign recognition by Aoyagi et al. [98] and Eccalera et al. [99]. It was proved in these studies that
this method is effective in detection of the traffic sign even if the traffic sign has some shape loss or
illumination problem. The disadvantage of the genetic algorithm is non-deterministic work time and
non-guarantee finding of the best solution [57]. Examples of TSDR systems using a genetic algorithm
method are shown in Table 8.

The other most common method for classification is using an artificial neural network (ANN).
This method has gained an increasing popularity in recent years due to the advancement in
general-purpose computing on graphics processing units (GPGPU) technologies [2]. In addition, it is
popular due to its robustness, greater adaptability to changes, flexibility and high accuracy rate [100].
Another key advantage of this method is its ability to recognize and classify objects at the same time,
while maintaining high speed and accuracy [2]. ANN-based classifiers were used in [56,99,101–108]
for TSDR. In the experiment conducted in [56], the hit rate was 97.6%, and the computational time was
0.2 s. However, in [107] ANN-based methods were described to have some limitations, such as their
slowness and the instability in the NN training due to too large a step. This method was compared with
a template matching method in [108], concluding that NNs require a large number of training samples
for real world applications. Examples of TSDR systems using an ANN method are shown Table 9.

Table 9. Examples of TSDR systems using an ANN method.

Ref Detection Feature Advantages
True

Positive
Rate

False
Positive

Rate

No. of
Test

Images

Overall
Accuracy Time Dataset

[56]
YCbCr and
normalized cross
correlation

Robustness and
adaptability 0.96 0.08

640 × 480
px video

data
97.6% 0.2 s Own

created

[101] N/A Flexibility and
high accuracy N/A N/A N/A 98.52–99.46% N/A Own

created

[106] Adaptive shape
analysis

Invariant in
illumination N/A N/A 220 95.4% 0.6 s Own

created

[107] NN Robustness N/A N/A 467 N/A N/A Own
created

[108]
Bimodal
binarization and
thresholding

Compared TM
and NN

elaborately
0.96 0.08

640 × 480
px video

data
97.6% 0.2 s Own

created

Another increasingly popular method in vision-based object recognition is the deep learning
method. This method has acquired general interest in recent years owing to its high performance
of classification and the power of representational learning from raw data [109,110]. Deep learning
is a part of a broader family of machine learning methods. In contrary to task specific methods,
deep learning focuses on data representations with supervised, weakly supervised or unsupervised
learning. Deep learning methods use a cascade of many layers of nonlinear processing units for
feature extraction and transformation. Each successive layer uses the output from the previous
layer as input. Higher level features are derived from lower level features to form a hierarchical
representation [110]. Among the deep learning models, the convolutional neural networks (CNN) have
acquired unique noteworthiness from their repeatedly confirmed superiorities [111]. According to [112],
CNN models are the most widely used deep learning algorithms for traffic sign classification to date.
Of the examples applied to traffic sign classification are committee CNN [113], multi-scale CNN [114],
multi-column CNN [102], multi-task CNN [111,115], hinge-loss CNN [116], deep CNN [46,117],
a CNN with diluted convolutions [118], a CNN with a generative adversarial network (GAN) [119],
and a CNN with SVM [120]. Based on these studies, a simultaneous detection and classification can be
achieved using deep learning-based methods. This simultaneousness results in improved performance,
boosted training and testing speeds. Examples of TSDR systems using a deep learning method are
shown in Table 10.
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Table 10. Examples of TSDR systems using a deep learning method.

Ref Detection Feature Advantages True Positive
Rate

False
Positive

Rate

No. of
Test

Images

Overall
Accuracy Time Dataset

[115] Object bounding
box prediction

Predicting position and
precise boundary
simultaneously

>0.88 mPA <3 pixels 3,719 91.95% N/A GTSDB

[120] YCbCr model High accuracy
and speed N/A N/A Video

data 98.6% N/A Own
created

[111] Color space
thresholding

Implementing detection
and classification 90.2% 2.4% 20,000 95% N/A GTSRB

[121] SVM Robust against
illumination changes N/A N/A Video

data 97.9% N/A Own
created

[117]
Scanning window
with a Haar
cascade detector

Enhanced detection
capability with good

time performance
N/A N/A 16,630 99.36% N/A GTSRB

Adaptive boosting or AdaBoost is a combination of multiple learning algorithms that can be
utilized for regression or classification [15]. It is a cascade algorithm, which was introduced by
Freund and R. Schapire [122]. Its working concept is based on constructing multiple weak classifiers
and assembling them into a single strong classifier for the overall task. As indicated in Table 11,
the AdaBoost method was used for TSDR in [123–127]. Based on these studies, it can be concluded that
the main advantage of the AdaBoost is its simplicity, high prediction power and capability to cascade
an architecture for improving the computational efficiency. However, its main disadvantage is that
if the input data have wide variations or abrupt changes in the background, then the training time
increases and classifier accuracy decreases [121]. In addition, the AdaBoost trained classifier cannot be
dynamically adjusted with new coming samples unless retrained from the beginning, which is time
consuming and demands storing all historical samples [128]. Examples of TSDR systems using an
AdaBoost method are shown in Table 11.

Table 11. Examples of TSDR systems using an AdaBoost method.

Ref Detection Feature Advantages
True

Positive
Rate

False
Positive

Rate

No. of
Test

Images

Overall
Accuracy Time Dataset

[123] Sobel edge
detection

Comparison of SVM and
AdaBoost N/A 0.25 N/A 92% N/A Own

created

[124] AdaBoost Fast N/A N/A 200 >90% 50 ms Own
created

[125] AdaBoost
Invariant in speed,
illumination and

viewing angle
92.47% 0% 350 94% 51.86 ms Own

created

[126] AdaBoost and
CHT

Real-time and robust system
with efficient SLS detection

and recognition
0.97 0.26 1850 94.5% 30–40 ms Own

created

[127] Haar-like method Reliability and accuracy 0.9 0.4 200 92.7% 50 ms Own
created

Support vector machine (SVM) is another classification method that contracts an N-dimensional
hyper plane that optimally separates the data into two categories. More precisely, SVM is a binary
classifier that separates two different classes by a subset of data samples called support vectors. It was
implemented as a classifier for traffic sign recognition in [44,55,88,129–136]. This classification method
is robust, highly accurate and extremely fast which is a good choice for large amounts of training
data. In [129], a SVM-based classifier was applied for detecting speed limit signs and it was compared
with the artificial neural network multilayer perceptron (MLP), k-nearest neighbors (kNN), least mean
squares (LMS), least squares (LS) and extreme learning machine (ELM) based classifiers. Results of
the comparison demonstrated that the SVM-based classifier obtained the highest accuracy and lowest
standard deviation amongst all other classifiers. Similarly, in a recent study [3], a cascaded linear
SVM classifier was used for detecting speed limit signs, and the result was a recall of 99.81% with
a precision of 99.08% on the GTSRB dataset. In [55], a SVM-based classifier was used to detect
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and classify red road signs in 1000 test images, and the accuracy rate was over 95%. In [88,131],
SVM was used with Gaussian kernels for the recognition of traffic signs, and the success rate was
92.3% and 92.6%, respectively. In [136], an advanced SVM method was proposed and tested with
binary pictogram and gray scale images; the result was achieving high accuracy rates of approximately
99.2% and 95.9%, respectively. SVM has also shown great effectiveness in extracting the most relevant
shots of an event of interest in a video, where a new SVM-based classifier called nearly-isotonic SVM
classifier (NI-SVM) was proposed in [137] for prioritizing the video shots using a novel notion of
semantic saliency. The proposed classifier exhibited higher discriminative power in event analysis
tasks. The main disadvantage of SVM is lack of transparency of results. Transparency means how the
results were obtained by the kernel and how the results should be interpreted. In SVM such things are
unknown and cannot be known due to the high dimensional vector space. Examples of TSDR systems
using a SVM method are shown in Table 12.

Table 12. Examples of TSDR systems using a SVM method.

Ref Detection Feature Advantages
True

Positive
Rate

False
Positive

Rate

No. of
Test

Images

Overall
Accuracy Time Dataset

[44] DtBs and SVM Fast, high accuracy N/A N/A Video
data 92.3% N/A GRAM

[55] Gabor Filter Simple and high
accuracy N/A N/A 58 93.1% N/A Own

created

[130]
CIELab and
Ramer–Douglas–Peucker
algorithm

Illumination proof
and high accuracy N/A N/A 405 97% N/A Own

created

[131] RGB to HSI then shape
analysis Less processing time N/A N/A 92.6% Avg. 5.67 s Own

created

[88] Hough transform Reliability
and accuracy N/A N/A Video

data Avg. 92.3% 35 ms Own
created

[132] RGB to HIS then shape
localization

Reduce the memory
space and time for
testing new sample

N/A N/A N/A 95% N/A Own
created

[133] MSER
Invariant in

illumination and
lighting condition

0.97 0.85 43,509 89.2% N/A Own
created

[134] HSI and edge detection Less processing time N/A N/A Video
data N/A N/A Own

created

[135] RGB to HSI Identify the optimal
image attributes 0.867 0.12 650 86.7% 0.125 s Own

created

[136] Edge Adaptive Gabor
Filtering

Reliability and
Robustness 85.93% 11.62% 387 95.8%. 3.5–5 ms Own

created
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Table 13. Examples of TSDR systems using the other methods.

Ref Method Detection Feature Advantages
True

Positive
Rate

False
Positive Rate

No. of
Test

Images

Overall
Accuracy Time Dataset

[138] SIFT matching N/A
Effective in recognizing

low light and
damaged signs

N/A N/A 60 N/A N/A Own
created

[34] Fringe-adjusted joint
Transform Correlation

Color Feature
Extraction using

Gabor Filter

Excellent discrimination
ability between object

and non-object
783 217 587 N/A N/A Own

created

[139] Principal Component
Analysis

HSV, CIECAM97
and PCA High accuracy rate N/A N/A N/A 99.2% 2.5 s Own

created

[140]

Improved Fast Radial
Symmetry and Pictogram
Distribution Histogram
based SVM

RGB to LaB color
space then IFRS

detection
High accuracy rate N/A N/A 300 96.93% N/A Own

created

[144] Infrastructures of vehicles N/A
Eliminating possibility

of false positive rate
because of ID coding

N/A N/A Video
data N/A. N/A Own

created

[145] FCM and Content Based
Image Recorder

Fuzzy c means
(FCM)

Effective in real
time application N/A N/A Video

data <80% N/A Own
created

[141]
Template matching and
3D reconstruction
algorithm

N/A
Very effective in

recognizing damaged or
occulted road signs

In 3D,
54 out
of 63

In 3D, 6 out
of 63 and

3 signs
were missing

4800 N/A N/A Own
created

[142] Low Rank Matrix
Recovery (LRMR) N/A Fast computation and

parallel execution N/A N/A 40,000 97.51% >0.2 GTSRB

[143] Karhunen–Loeve
Transform and MLP

Oriented
gradient maps

Invariant in illumination
an different

lighting condition
N/A N/A 12,600 95.9% 0.0054

s/image GTSRB

[35] Self-Organizing Map N/A Fast and accurate N/A N/A N/A <99% N/A Own
created

In addition to these conventional methods, researchers have used other methods for recognition.
In [138], the SIFT matching method was used for recognizing broken areas of a traffic sign. This method
adjusts the traffic sign to a standard camera axis and then compares it with a reference image.
Sebanja et al. in [139] used principal component analysis (PCA) for both TSDR and the accuracy rate
was approximately 99.2%. In [140], the researchers used improved fast radial symmetry (IFRS) for
detection and a pictogram distribution histogram (PDH) for recognition. Soheilian et al. in [141]
used template matching followed by a three dimensional (3D) reconstruction algorithm to reconstruct
the traffic signs obtained from video data and to improve the visual angle for detecting traffic signs.
In [142], Pei et al. used low rank matrix recovery (LRMR) to recover the correlation for classification
with a hit rate of 97.51% in less than 0.2 s. Gonzalez-Reyna et al. [143] used oriented gradient maps for
feature extraction, which is invariant in illumination and variable lighting. For classification, they used
Karhunen–Loeve transform and MLP. They reported an accuracy of 95.9% and processing time of
0.0054 s per image. In [35], Miguel et al. used a self-organizing map (SOM) for recognition, where in
every level, a pre-processor extracts a feature vector characterizing the ROI and passes it to the SOM.
The accuracy rate was very high, approximately 99%. Examples of TSDR systems using the other
methods are shown in Table 13.

5. Current Issues and Challenges

TSDR is the essential part of the ADAS. It is mainly designed to operate in a real-time
environment for enhancing driver safety through the fast acquisition and interpretation of traffic signs.
However, there are a number of external non-technical challenges that may face this system in the
real environment degrading its performance significantly. Among the many issues that needed to be
addressed while developing a TSDR system are the following issues outlined in Figure 13.
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Figure 13. Some of TSDR challenges.

Variable lighting condition: Variable lighting condition is one of the key issues to be considered
during TSDR system development. As aforementioned, one of the main distinguishing features of
traffic sign is its unique colors which discriminate it from the background information, thus facilitating
its detection. However, in outdoor environments illumination changes greatly affects the color of traffic
sign, making the color information become completely unreliable as a main feature for traffic sign
detection. To cope with such challenge, a method based on adaptive color threshold segmentation and
high efficient shape symmetry algorithms has been recently proposed by Xu et al. [26]. This method is
claimed to be robust for a complex illumination environment, exceeding a detection rate of 94% on
GTSDB dataset.

Fading and blurring effect: Another important difficulty for a TSDR system is the fading and
blurring of traffic signs caused by illumination through rain or snow. These conditions can lead to
increase in false detections and reduce the effectiveness of a TSDR system. Using a hybrid shape-based
detection and recognition method in such conditions can be very useful and may give more superior
performance [146].

Affected visibility: Light emitted by the headlamps of the incoming vehicles, shadows, and other
weather-related factors such as rains, clouds, snow and fog can lead to poor visibility. Recognizing traffic
signs from a road image taken in such cases is a challenging task, and a simple detector may fail to
detect these traffic signs. To resolve this problem, it is necessary to enhance the quality of taken images
and make them clear by using an image pre-processing technique. A pre-processing makes image
filtration and converts input information into usable format for further analysis and detection [147].

Multiple appearances of sign: While detecting traffic signs mainly in city areas, which are more
crowded by signs, multiple traffic sign appearing at a time and similar shape man-made objects can
cause overlapping of signs and lead to a false detection. The detection process can also be affected
by rotation, translation, scaling and partial occlusion. Li et al. in [33], used HSI transform and fuzzy
shape recognizer which is robust and unaffected by these problems and its accuracy rate in different
weather condition is; sunny 94.66%, cloudy 92.05%, rainy 90.72%.

Motion artifacts: In the ADAS application, the images are captured from a moving vehicle and
sometimes using a low resolution camera, thus, these images usually appear blurry. Recognition of
blurred images is a challenging task and may lead to false results. In this respect, a TSDR system
that integrates color, shape, and motion information could be a possible solution. In such a system,
the robustness of recognition is improved through incorporating the detection and classification with
tracking using temporal information fusion [73]. The detected traffic signs are tracked, and individual
detections from sequential frames (t−t0, . . . , t) are temporally fused for a robust overall recognition.

Damaged or partially obscured sign: The other distinctive feature of traffic sign is its unique shape.
However, traffic signs could appear in various conditions including damaged, partly occluded and/or
clustered. These conditions can be very problematic for the detection systems, particularly shape-based
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detection systems. In order to overcome these problems, hybrid color segmentation and shape analysis
based methods are recommended [15].

Unavailability of public database: A database is a crucial requirement for developing any TSDR
system. It is used for training and testing the detection and recognition methods. One of the obstacles
facing this research area is the lack of large, properly organized, and free available public image
databases. According to [12], for example, the most commonly used database (GTSDB database)
contains only 600 training images and 300 evaluation images. Of the seven categories classified in
the Vienna convention, GTSDB covers only three categories of traffic signs for detection: prohibitory,
mandatory and danger. All included images are only German traffic signs, which are substantially
different from other parts of the world. To resolve the database scarcity problem, perhaps one of the
ideas is to create a unified global database containing a large number of images and videos for road
scenes in various countries around the world. These scenes must contain all categories of traffic signs
under all possible weather conditions and physical states of the signs.

Real-time application: The detection and recognition of traffic signs are caught up with the
performance of a system in real-time. Accuracy and speed are surely the two main requirements in
practical applications. Achieving these requirements requires a system with efficient algorithms and
powerful hardware. A good choice is convolutional neural networks-based learning methods with
GPGPU technologies [2].

In brief, although lots of relevant approaches have been presented in the literature, no one can
solve the traffic sign recognition problem very well in conditions of different illumination, motion blur,
occlusion and so on. Therefore, more effective and more robust approaches need to be developed [12].

6. Conclusions and Suggestion

The major objective of the paper was to analyze the main direction of the research in the field of
automatic TSDR and to categorize the main approaches into particular sections to make the topics
easy to understand and to visualize the overall research for future directions. Unlike most of the
available review papers, the scope of this paper has been broadened to cover all recognition phases:
Detection, tracking and classification. In addition, this paper has tried to discuss as many studies as
possible, in an attempt to provide a comprehensive review of the various alternative methods available
for traffic sign detection and recognition; including along with methods categorization, current trends
and research challenges associated with TSDR systems. The overall summary is presented in Figure 14.
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The conducted review reveals that research in traffic sign detection and recognition has grown
rapidly, where the number of papers published during the last three years was approximately 280 papers,
which represents about 41.69% of the total number of papers published during the last decade as
a whole. With regard to the methods used, it was observed that the subject of traffic sign detection
and recognition incorporates three main steps: Detection, tracking and classification; and in each
step, many methods and algorithms were applied, each has its own merits and demerits. In general,
the methods applied in detection and recognition consider either color or shape information of the
traffic sign. However, it is well known that the image quality in real-world traffic scenarios is usually
poor; due to low resolution, weather condition, varying lighting, motion blur, occlusion, scale and
rotation and so on. In addition, traffic signs are usually in a variety of appearances, with high inter-class
similarity, and complicated backgrounds. Thus, proper integration of color and shape information
in both detection and classification phases is a very promising and exciting task that is in need of
much more attention. For tracking, the Kalman filter and its variations are the most common methods.
For classification, artificial neural network and support vector machine-based methods were found
to be the most popular methods, with a high detection rate, high flexibility and easy adoptability.
Despite the recent improvements in the overall performance of TSDR systems, more research is still
needed to achieve a rigorous, robust and reliable TSDR system. It is believed that TSDR system
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performance can be enhanced by merging the detection and classification tasks into one step rather
than performing them separately. By doing so, classification can improve detection and vice versa.
Another idea for further improvement of TSDR is by using standard, sufficient and large databases
for learning, testing and evaluation of the proposed algorithms. In this way, the TSDR system will
be able to recognize the eight different categories of the traffic signs in the real environment with
different conditions. This paper will be a useful reference for researchers looking for an understanding
of the current status of research in the field of TSDR and finding the related research problems in need
of solutions.
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101. CireşAn, D.; Meier, U.; Masci, J.; Schmidhuber, J. Multi-column deep neural network for traffic sign
classification. Neural Netw. 2012, 32, 333–338. [CrossRef]

102. Fang, C.-Y.; Fuh, C.-S.; Yen, P.; Cherng, S.; Chen, S.-W. An automatic road sign recognition system based on
a computational model of human recognition processing. Comput. Vis. Image Underst. 2004, 96, 237–268.
[CrossRef]

103. Broggi, A.; Cerri, P.; Medici, P.; Porta, P.P.; Ghisio, G. Real time road signs recognition. In Proceedings of the
2007 IEEE Intelligent Vehicles Symposium, Istanbul, Turkey, 13–15 June 2007; pp. 981–986.

104. Li, L.-B.; Ma, G.-F. Detection and classification of traffic signs in natural environments. J. Harbin Inst. Technol.
2009, 41, 682–687.

105. Sheng, Y.; Zhang, K.; Ye, C.; Liang, C.; Li, J. Automatic detection and recognition of traffic signs in stereo
images based on features and probabilistic neural networks. In Proceedings of the Optical and Digital Image
Processing, Strasbourg, France, 25 April 2008; p. 70001I.
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