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Abstract

Solar energy is a major type of renewable energy, and its estimation is important for deci-

sion-makers. This study introduces a new prediction model for solar radiation based on

support vector regression (SVR) and the improved particle swarm optimization (IPSO) algo-

rithm. The new version of algorithm attempts to enhance the global search ability for the

PSO. In practice, the SVR method has a few parameters that should be determined through

a trial-and-error procedure while developing the prediction model. This procedure usually

leads to non-optimal choices for these parameters and, hence, poor prediction accuracy.

Therefore, there is a need to integrate the SVR model with an optimization algorithm to

achieve optimal choices for these parameters. Thus, the IPSO algorithm, as an optimizer is

integrated with SVR to obtain optimal values for the SVR parameters. To examine the pro-

posed model, two solar radiation stations, Adana, Antakya and Konya, in Turkey, are con-

sidered for this study. In addition, different models have been tested for this prediction,

namely, the M5 tree model (M5T), genetic programming (GP), SVR integrated with four dif-

ferent optimization algorithms SVR-PSO, SVR-IPSO, Genetic Algorithm (SVR-GA), FireFly

Algorithm (SVR-FFA) and the multivariate adaptive regression (MARS) model. The sensitiv-

ity analysis is performed to achieve the highest accuracy level of the prediction by choosing

different input parameters. Several performance measuring indices have been considered

to examine the efficiency of all the prediction methods. The results show that SVR-IPSO out-

performed M5T and MARS.
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Introduction

Solar energy is one of the most important forms of energy. Although fossil fuels can produce a

large amount of energy, they cause various kinds of pollution [1,2]. Undoubtedly the knowl-

edge of solar radiation is important as it has direct or indirect impact on the current and future

life [3]. This energy affects the agriculture, industry engineering, health and the tourism sector

of any nation [2].

Solar radiation (SR), however, does not cause environmental pollution [3,4]. Solar energy

can be converted to heat energy or electricity [5,6] and has high potential as an energy supply

in various fields. Solar energy can be accessed easily and is not limited to specific regions in

the world. Low maintenance cost is one of the most important features of solar energy [7].

Recently, there have been many advances in solar energy generation, such as solar cells [8,9].

The pyranometers or actiongraphs are used for the direct measurement of solar radiation [8].

The measurements can be very accurate with the new sensors, but also the device cost, installa-

tion and the maintenance cost to bear is a big drawback for many countries.

Different researchers have used mathematical and statistical methods and artificial

intelligence techniques to compute solar radiation energy [3,8]. A combination of artificial

intelligence and soft computing with mathematical and statistical methods has led to the devel-

opment of mathematical models. Increased precision, speed, and ease of computation are

considered desirable features for techniques based on artificial intelligence [10]. Statistical

regression models have weaknesses that could be overcome with the incorporation of optimi-

zation algorithms. For example, SVR could be integrated with PSO to optimally adapt SVR’s

unknown parameters instead of using a trial-and-error procedure that could lead to non-opti-

mal selection of the unknown parameters and, as a result, poor prediction accuracy.

Background

Artificial neural network (ANN) models were used by [11] to predict SR. The ANN model

was compared with SVR, and it was found that multi-layer perceptron neural networks could

achieve better RMSE than could SVR and other kinds of ANNs. Latitude, longitude, monthly

minimum and maximum temperatures, and relative humidity were used as inputs. Landeras

et al. [12] used genetic programming (GP) to compute SR. A radial neural network with four

input layers, namely, maximum temperature, hours of sunshine, relative humidity, and mini-

mum temperature, was used. The results based on GP had a higher correlation coefficient than

the results of an ANN trained by PSO [13]. The number and structure of the neurons and hidden

layers of the ANN model depended on the PSO. The results showed that the improved ANN was

more accurate than the classic ANN model with simple architecture. Khatib et al. [14] compared

different methods of computing SR and showed that regression methods had drawbacks in terms

of identifying the unknown parameters and that artificial intelligence methods generally outper-

formed them. The unknown parameters of the regression methods were computed by optimiza-

tion. K-means clustering and ANNs were used by [15] to compute SR. A comparison of the

results showed that the clustering method had a smaller RMSE and MAE than the ANN model.

SR has also been estimated by a hidden Markov model and a generalized fuzzy model [16].

Different combinations of meteorological parameters have been considered for predicting

the SR. Atmospheric pressure, relative humidity, wind speed, and sunshine were used for the

SR simulation. The best results were achieved by the combination that used all the inputs

except wind speed. The ANN was improved by a genetic algorithm (GA) for computing SR

[17]. The GA optimization method computed the number of hidden layers and neurons in the

ANN. The results showed that the predictive ability of the ANN was related to the training

algorithm and input combinations. A tree regression model and an ANN were used to predict

Integrated support vector regression and particle swarm optimization model for solar radiation prediction
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daily global SR (DGSR) for two locations [18]; the results showed that the ANN estimated

DGSR satisfactorily. Mohammadi et al. [19] studied SR based on the combination of SVM

and a wavelet method. Air temperature, humidity, and sunshine duration were considered as

inputs. The new hybrid SVM achieved more accurate results than simple SVM and ANN mod-

els. Olatomive et al. [20]trained a neural network for the computation of solar radiation by

computing the number of hidden layers, and the results were compared with those of GP and

SVR. The results showed that the trained neural network reduced the RMSE value by 20 and

25%, respectively, compared to the GP and SVR. Premalatha et al. [21]used the Levenberg-

Marquardat algorithm, resilient propagation and the scaled conjugate gradient for the devel-

opment of a neural network and the simulation of solar radiation; the results showed that the

mean absolute error of the Levenberg-Marquardat algorithm was 20 and 25% less than those

of the resilient propagation and scaled conjugate gradient methods, respectively.

SR has been predicted by a least squares support vector machine (LSSVM) and the firefly

optimization algorithm (FFOA) [22] by functionalizing the latter to optimally select the

unknown parameters for the LSSVM. The results showed that the new hybrid structure

achieved smaller RMSE than did GP and SVR. The accuracies of the three methods (the adap-

tive neuro-fuzzy interface system (ANFIS), SVR and ANN) were considered for computing SR

[23]. The results showed that ANFIS with inputs of the daily maximum and minimum tempera-

tures, hours of sunshine, and rainfall, exhibited better performance than other models. Ibrahim

and Khatib [24] used the hybrid structure of Random Forest and Firefly algorithm for the com-

putation of solar radiation; the results showed that the hybrid method had a lower value for the

error index than the GP and neural network methods. Meenal et al. [25] used SVR and ANN to

simulate solar radiation; the results showed that these models could reduce the RMSE by 20 and

25% over the empirical models. Kumar et al. [26] simulated solar radiation with the different

neural networks, and the radial basis neural network had the best results in comparison to other

kinds of neural networks; the MAE and RMSE values were negligible for the radial basis neural

network. Voyant et al. [27] reviewed several methods for the simulation of solar radiation in the

literature; the results showed that the kind of inputs and the accurate estimation of unknown

parameters in the regression methods had important effects on the results. Wang et al. [28]

trained a system of fuzzy rules using the particle swarm algorithm for the computation of solar

radiation and compared the results to those of a neural network and genetic programming.

This showed that the improved fuzzy rules increased the correlation coefficient between the

observed data and simulated data in comparison to the neural network and GP methods.

Alfadda et al. [29] used the k nearest neighbours and the SVR method to determine solar

radiation based on hours of sunshine, maximum temperature, minimum temperature and rel-

ative humidity; the results showed that the k nearest neighbours could reduce the RMSE by

20% in comparison to SVR.

Wang et al. [30] used radial basis neural network (RBNN), generalized regression neural

network (GRNN) and multilayer perceptron neural network (MPNN) for estimating of solar

radiation. The results indicated that MPNN and RBNN can predict more accurately compared

with the GRNN and there is significant different among these models.

Rohani et al. [31] used the Gaussian progress regression with K fold cross validation for the

estimating of daily solar radiation. The results proved that the new model can be used with

small size of data group and it can predict better than empirical model.

However, the general results of the literature review showed that neural networks and fuzzy

methods have good performance in estimating solar radiation but require the accurate deter-

mination of several parameters, such as weights or the number of hidden layers in a neural

network [32,33]. In addition, the structures of these methods are more complex than that of

regression methods would be if the regression methods could be applied to solar radiation.

Integrated support vector regression and particle swarm optimization model for solar radiation prediction
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Innovation and objectives

A literature review shows that SVR has been widely used for SR simulation [22,32–36]. Defin-

ing the best values of the regression parameters is important for regression models, as this step

influences the final prediction accuracy for the whole process. Most of the previous studies

determined the best values of the regression parameters using trial and error [22,27,35,37].

Conventionally the integration was basically developed on the basis two different concepts.

The first one is to initialized the regularization parameters (three parameters) of the SVR and

then identify the best fitness of these parameters by trials and errors for different group of

these random initialization. On the other hand, the second concept was developed as modifica-

tions for the first concept by initializing the SRV regularization parameters within a predeter-

mined domain to accelerate the training process and by adding k-fold procedure for avoiding

the over-fitting for the model performance.

In the current research, the concept of the integration between the SVR and PSO is princi-

pally different than the previous ones, as it was developed to compute the objective function

for the Root Mean Square Error (RMSE) for the initialized regular parameters of the SVR to

search for their optimal values of the initial parameters which are considered as multiple deci-

sion variables using PSO algorithm.

In addition, the present study suggests a novel structure for an SVR model that is inte-

grated with Improved PSO (IPSO) as an optimizer. IPSO determines the best values of the

regression parameters in SVR, and then the SVR model is used to compute SR. The literature

shows that PSO has high potential for use in different optimization applications, such as

image processing, dam and reservoir operation, mathematical functions, hydrological pre-

diction, and optimal design [36,38–41]. The new version of algorithm is defined for this

paper so that the global ability search for the PSO algorithm increase and the algorithm can

escape from local optimums well and thus, a new operator for the algorithm is defined to

update the global solutions. Another innovation aspect of the current paper is related to

the comprehensive evaluation of different models for the solar estimation in the different

climates.

The objectives of this paper are i) to evaluate the ability of a new version of SVR to predict

SR, ii) to compare the new method to the M5T, GP and multivariate adaptive regression mod-

els, and iii) to investigate the effect of different input variables on the models’ predictive ability.

Two case studies in Turkey are used to validate the proposed prediction model.

Methods

Support vector regression

For SVR, a linear function is defined that the related independent and dependent variables. A

linear equation is used as the main equation in SVR and is expressed as

f ðxÞ ¼WTr:x þ b ð1Þ

where x is the input variable, W is the weighting vector, b is the bias, Tr is the transpose, and

f(x) is the output variable. Vapnik et al. [42] suggested the following error function to prevent

an overfitting deficit. The function is defined based on the following equation and is known as

the epsilon intensive function:

jy � f ðxÞj ¼
0 if ðy � f ðxÞÞ � k

jy � f ðxÞj � k ¼ x

( )

ð2Þ
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is subject to

ðwi:xi þ bÞ � yi < kþ x
þ

i

yi � ðwi:xi þ bÞ � kþ x�i
x
þ

i ; x
�

i

ð3Þ

where x
þ

i and x
�

i are violations of the ith training data that are below and above (0κ,+κ), κ is

the permissible error threshold, yi is the output variable, xi is the input variable, wi is the weight

vector, ξ is the computed penalty for the estimated error, and b and w are two decision vari-

ables. The values of b and w are computed when the SVR completes the training level. The

values of b and w are inserted into Eq (1), and f(x) is computed. There are several kernel func-

tions that can convert linear Eq (1) into nonlinear forms. The radio kernel function has been

widely used in previous articles [22,27,35,37].

f ðxÞ ¼ wTr:Kðx; xiÞ þ b ð4Þ

Kðx; xiÞ ¼ exp �
jx � xij

2

2g2

� �

ð5Þ

where K(x, xi) is the kernel function and γ is a parameter. The most important duty of SVR

is to compute the values of the parameters κ and γ. Huang and Wang [43] found that these

parameters have an important effect on the results.

Particle Swarm Optimization

The basis of PSO is the group behaviour of particles in a search space. In addition, members

of the community can profit from the experiences of other members. An important feature

of the PSO algorithm is social behaviour, in that it directs members towards the best place in

the search space. Each particle in PSO is known as one solution candidate in the domain of

possible solutions. The ith member of the population is represented by a D-dimensional vector

Xi = (xi1, xi2, .., xid)T. In addition, Vi = (vi1, vi2, .., vid)T is the velocity of the particle. The best

previously computed position of the ith particle is Pi = (pi1, pi2, .., piD)T, and the index g in the

equations indicates a global guide for the particle in the population. The positions and veloci-

ties of the particles are updated based on the following equations:

vnþ1

id ¼ w iwvnid þ c1r
n
1

ðpnid � xnidÞ
Dt

þ c2r
n
2

ðpngd � xngdÞ
Dt

� �

ð6Þ

xnþ1

id ¼ xnid þ Dtðv
nþ1

id Þ ð7Þ

Here, d = 1,2.., D, χ is a constriction coefficient, iw is the inertia weight, c1 and c2 are accelera-

tion coefficients, r1 and r2 are random parameters, and Δt is the time interval.

The global best particle is considered as solution candidate, it guides the other particle

toward to the other neighbours, and thus, this issue can cause that the particles trap in the local

optimums. As a result, many particles will not have chance of a comprehensive search of large

problem space. Thus, an effective strategy can cause the particles to get rid of local optimums

and a global strategy, based on following equation, is used for improving the model’s effi-

ciency.

p0ngd ¼ pngd � ð1þ l� Nð0; 1ÞÞ ð8Þ
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Where, λ: disturbance factor, N(0, 1): the normal distribution. λ was tested with the different

values (i.e. 0.01, 0.02, 0.05, 0.10, 0.15 and 0.2) and there is not significant in the results and

thus, it was considered 0.1. the pngd is replaced with p0ngd when the p0ngd has the better value com-

pared to the pngd.

SVR and IPSO

The hybrid structure of SVR and IPSO was considered through the following steps:

1. Determine the input variables for data collection and processing.

2. Consider the initial values of the SVR parameters.

3. Consider the training level of the SVR and compute the objective function (RMSE) for the

input variables.

4. If the stopping criterion is satisfied, the optimal values of the coefficients are extracted for

the test level. Otherwise, the algorithm goes to the next level.

5. The parameters are considered decision variables and are inserted into the IPSO. The veloc-

ities and positions of these variables are updated, and the algorithm returns to the third

step. Fig 1 shows the performance flowchart for SVR-IPSO.

Genetic programming

Genetic programming is a successful and widely used method in hydrological simulation. The

method searches for a good relationship between the input and output variables. Fig 2b and 2c

shows that the method acts based on tree structures. There are different nodes and several

branches that connect them to one another. The terminal and function sets are used in the

nodes. The terminal sets consist of numerical and non-numerical variables, and the function

sets consist of automatic operators (± ×�), mathematical functions (e.g., sin, cos), Boolean

operators and logical expressions. The search process proceeds by generating random trees.

Each tree has an objective function with a corresponding error function. A ranking method is

used for the selection of trees with better objective functions. Crossover and mutation opera-

tors prepare the trees for the next iteration, as shown in Fig 2d and 2e. Two trees are designed,

and some branches are considered for them. In addition, the swapping of parent subtrees can

be used to generate two new trees. Fig 2d and 2f show the condition of two new trees after

crossover. A mutation operator is another genetic operator that exchanges nodes using a ran-

dom variable or operator. Fig 2g and 2h shows the condition of trees before and after muta-

tion. Two arithmetic operators (± and ×) and three mathematical functions (sin, cos and

power (xy)) are considered for the GP; a Gaussian membership function has been shown to

give good results for solar radiation [19,44].

Case study

The present study deals with computing solar radiation in a Mediterranean region of Turkey.

The Adana and Antakya stations are considered (Fig 3). The major climatic features of this

region are inclination towards rainy winters and hot summers. The Adana station is located at

latitude 37.22˚N, longitude 35.40˚E, and an altitude of 20 m; Antakya is located at latitude

36.22˚N, longitude 35.40˚E, and an altitude of 20 m. The climatic conditions of the region are

affected by a winter season with high rainfall as well as hot summers. The SR distribution

Integrated support vector regression and particle swarm optimization model for solar radiation prediction
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shows that the region has high solar energy potential and Turkey has high potential for solar

energy because it is in the northern hemisphere. The most value for solar radiation for two sta-

tions are observed in July. The annual solar radiation for Antakya is 10.89 MJ/m2/day and it is

12.23 MJ/m2/day for Adana station.

Fig 1. Structure of the hybrid SVR and IPSO.

https://doi.org/10.1371/journal.pone.0217634.g001
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The data is provided by the Turkish State Meteorological services of Ministry of Agriculture

and Forestry, turkey [45]. Data were collected from 1981 to 2016. Based on previous studies,

75% of the data were used for training and 25% for testing [22,27,35,37]. Yearly rainfall varies

from 580 to 1300 mm. There are many stations in turkey measure solar radiation based on

Siap, Muller and Fuess actiongraphs and there are 11 other stations that have pyranometers

for measuring the solar radiation.

Table 1 shows the statistical data for the stations. The highest skew distribution is related

to the wind speed, followed by the relative humidity and maximum temperature for both

Fig 2. Genetic porgramming structure and search process.

https://doi.org/10.1371/journal.pone.0217634.g002
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Fig 3. a) Location of the studied stations b: Temperature Average c: Sun hours Average, d: Rainfall average and e: Humidity

average.

https://doi.org/10.1371/journal.pone.0217634.g003
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stations. The highest correlation coefficient is for hours of sunshine; thus, there is a high corre-

lation between the hours of sunshine and solar radiation. The necessary data were collected at

a geophysics institute for the Antakya and Adana stations from 1981 to 2016.

Model structure and performance indicators

Evolutionary algorithms, such as IPSO, have parameters whose best values can be reported

based on a literature review or experimentation. We set an interval for the random parameters

and evaluate the variations in the objective function for various values of the parameters.

Then, the best values of the parameters (c1 and c2 = 2, w = 0.6 and population size for particle

swarm = 40) are selected when the objective function converges to its minimum value

[38,39,46]. A sensitivity analysis is considered for determining the most suitable parameters

and the variation of objective function values is observed accordingly. In this regard, the least

objective function value was preferred.

Several scenarios based on different inputs have been proposed based on the correlation

coefficients between different input variables and solar radiation. Therefore, four scenarios

based on four different input combinations were considered in this study. Keshtgar et al. [3]

reported the same inputs for the two stations over the same period (1981–2016).

1. Maximum and minimum temperature

2. Maximum temperature, minimum temperature and sunshine duration

3. Maximum temperature, minimum temperature, sunshine duration and wind speed

4. Maximum temperature, minimum temperature, sunshine duration, wind speed and rela-

tive humidity

Keshtgar et al. [3] estimated solar radiation by the M5Tree model (M5T) and multivariate

adaptive regression splines using the same inputs. The results were then compared with the

results of previous studies. The M5T divided the search space into subspaces and developed a

linear regression model for each one [3]. The M5T model divided the data into several sub-col-

lections and then generated decision trees. Each tree had a node on the top and branches con-

nected to other nodes.

Table 1. Monthly statistical parameters of each climatological data set.

Station Data set Unit xmean xmin xmax Correlation with SR

Adana Tmax ˚C 31.32 17 43.8 0.802

Tmin ˚C 9.32 -6.4 23.4 0.794

Hs H 223 0 365 0.899

Ws m/s 1.34 0.10 2.3 0.277

Rh % 66.4 46.4 80.8 0.152

Sr Langley 110 36.3 195 1.000

Antakya Tmax ˚C 30.10 14.4 42.6 0.798

Tmin ˚C 9.38 -4.6 24.8 0.818

Hs H 229 29.6 384 0.923

Ws m/s 3.15 1.1 7.1 0.865

Rh % 69.8 49.4 85.1 -0.104

Sr Langley 98.6 27.5 179 1.000

Tmax = maximum temperature, Tmin = minimum temperature, Hs = sunshine duration, Ws = wind speed, Rh = relative humidity, Sr = solar radiation, xmin = minimum

value, xmax = maximum value and xmean = average value

https://doi.org/10.1371/journal.pone.0217634.t001
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The division rule relies on decreasing the standard deviation of the category values that

reach a node as an error index for that node [3]. Piecewise linear splines were used in a multi-

variate adaptive regression model (MARS) known as nonlinear and non-parametric regres-

sion. The method could model nonlinear relationships between dependent and independent

variables.

To evaluate and examine the performance of the proposed prediction model, several perfor-

mance indicators have been calculated. The following indices were used to evaluate the devel-

oped models:

Root mean square error (RMSE) as the objective function:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

ðSRmi � SRoiÞ
2

N

v
u
u
u
t

ð9Þ

Mean absolute error (MAE):

MAE ¼

XN

i¼1
jSRmi � SRoij
N

ð10Þ

Mean bias error:

MBE ¼
1

N

XN

i¼1

SRmi � SRoi
SRoi

ð11Þ

Nash-Sutcliff efficiency:

NSE ¼ 1 �

XN

i¼1

ðSRmi � SRoiÞ
2

XN

i¼1

ðSRoi � SRmeanÞ
2

ð12Þ

Here, Srmi is the estimated solar radiation, SRoi is the observed solar radiation, SRmean is

the average observed solar radiation, and N is number of data points.

Results and discussion

Antakya station

Table 2 shows the performance of different methods in the test stage for the Antakya station.

The MAE index shows that the fourth input combination resulted in the best performance for

SVR-PSO among all input combinations. The MAE index for SVR-PSO (4) was 43, 37, and

16% less than those for SVR-PSO (1), SVR-PSO (2) and SVR-PSO (3), respectively. The other

indices supported this finding. For example, the RMSE index for SVR-PSO (4) was 52, 28 and

8.79% less than those for SVR-PSO (1), SVR-PSO (2) and SVR-PSO (3), respectively. Thus,

increasing the number of input data points for SVR-PSO led to improved results for Antakya

station.

SVR-IPSO was compared to M5T, MARS and SVR-PSO models for the Antakya station.

The results showed that the improved PSO and SVR predicted better compared to the other

models. For example, RMSE for SVR-IPSO (4) is 20%, 57%, 55% and 25% less than SVR-PSO

(4), M5T (4), MARS (4) and GP (4). Also, the best input combination for the SVR-IPSO is the
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fourth combination. Also, the NSE coefficient for the SVR-IPSO performed better than the

other methods.

SVR-PSO was compared to M5T and MARS for the Antakya station. The results showed

that SVR-PSO outperformed MARS and M5T models. For example, the MBE for SVR-PSO

(4), the best SVR-PSO model, was 12 and 75% less than those for M5T (4) and MARS (4),

which were the best MARS and M5T models. The NSE for SVR-PSO (4) was 0.924, which was

0.3 and 2.2% greater than those for MARS (4) and M5T (4), the best MARS and M5T models.

Table 2 also shows that the results of SVR-PSO are better than those of genetic programming

(GP). For example, the MAE and RMSE for SVR-PSO (4) are 7.7 and 1.7%, which are less than

those for GP. The best combination of inputs for GP occurs in GP (4); the results show that

this GP performs better than MARS and M5T for all inputs. For example, the MAE and RMSE

for GP (4) are 66 and 15%, which are less than the MARS indices. An increase in inputs to

SVR-IPSO results in good performance.

Based on the comparison of the performances, as shown in the Table 2, it is noticeable that

M5T (1) model has the lowest accuracy, with the first inputs. Thus, RMSE, MAE, NSE and

MBE had the highest values in comparison to the SVR-PSO and MARS models. Increasing the

number of inputs improved the performance of the M5T model for all indices. For example,

the RMSE for M5T (4) was 48, 20 and 1.8% less than those for M5T (3), M5T (5) and M5T (1),

respectively. Fig 4 shows the values of RMSE (the objective function) for different models.

The RMSE indices for the SVR-IPSO method, based on all inputs, were less than those for

the MARS and M5T models (Fig 4). In addition, the lowest value of the RMSE index was

exhibited by SVR-IPSO (4) and the highest value was exhibited by M5T (1). The general results

for the Antakya station showed that SVR-PSO had the best performance in comparison to the

other models. Fig 5 shows the R2 coefficients for different SVR-IPSO models. Based on its

Table 2. Comparison of statistical indices for different methods for estimation of solar radiation in Antakya station.

Method Input variables MAE (Langley) RMSE

(Langley)

MBE NSE Time (s)

SVR-IPSO (1) Tmax, Tmin 9.01 19.10 0.141 0.72 10

SVR-PSO (1) κ = 0.05, C = 61, γ = 0.167 Tmax, Tmin 9.12 19.11 0.142 0.701 10

M5T (1) [3] Tmax, Tmin 17.83 23.80 0.176 0.639 12

MARS (1) [3] Tmax, Tmin 16.75 21.74 0.166 0.699 14

GP(1) Tmax, Tmin 16.55 20.72 0.154 0.654 11

SVR-IPSO (2) Tmax, Tmin, Hs 8.12 12.52 0.101 0.843 12

SVR-PSO (2) κ = 0.05, C = 60, γ = 0.166 Tmax, Tmin, Hs 8.25 12.54 0.103 0.842 12

M5T (2) [3] Tmax, Tmin, Hs 12.09 15.58 0.106 0.873 15

MARS (2) [3] Tmax, Tmin ‘, Hs 11.17 14.10 0.112 0.845 17

GP (2) Tmax, Tmin ‘, Hs 8.29 12.59 0.107 0.844 14

SVR-IPSO (3) Tmax, Tmin, Hs, Ws 6.01 10.11 -0.022 0.942 16

SVR-PSO (3) Tmax, Tmin, Hs, Ws 6.12 10.12 -0.023 0.917 16

M5T (3) [3] κ = 0.05, C = 55, γ = 0.164 Tmax, Tmin, Hs, Ws 9.45 12.58 -0.037 0.899 18

MARS (3) [3] Tmax, Tmin, Hs, Ws 9.88 11.56 -0.097 0.915 20

GP (3) Tmax, Tmin, Hs, Ws 6.72 10.45 -0.022 0.824 17

SVR-IPSO (4) Tmax, Tmin, Hs, Ws, Rh 4.10 9.01 -0.020 0.954 18

SVR-PSO (4) κ = 0.04, C = 54, γ = 0.167 Tmax, Tmin, Hs, Ws, Rh 5.12 9.23 -0.021 0.924 19

M5T (4) [3] Tmax, Tmin, Hs, Ws, Rh 9.35 12.35 -0.024 0.903 22

MARS (4) [3] Tmax, Tmin, Hs, Ws, Rh 9.26 11.12 -0.086 0.921 25

GP (4) Tmax, Tmin, Hs, Ws, Rh 5.55 9.39 -0.025 0.922 20

https://doi.org/10.1371/journal.pone.0217634.t002
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Fig 4. Computed RMSE for Antakya station.

https://doi.org/10.1371/journal.pone.0217634.g004

Fig 5. Observed and estimated SR of Antakya station at the test stage. (A) SVR-IPSO (4), (B) SVR- IPSO (3), (C) SVR-I PSO (2) and (D) SVR-IPSO

(1).

https://doi.org/10.1371/journal.pone.0217634.g005
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higher value for the R2 coefficient (Fig 5), SVR-IPSO (4) performed better than the other

SVR-IPSO models. In general, the kind of inputs and the number of inputs affect the accuracy

of the results. The consideration of parameters with high correlations, such as maximum and

minimum temperature, can be good choices for inputs. In addition, one of the most important

factors for the evaluation of the different methods is the computational time. Table 2 shows

that SVR-IPSO could obtain the desired outputs with less computational time. For example,

the computational time for SVR-IPSO (4) is, 5.2% 13, 24 and 5% less than those for SVR-PSO

(4), M5T (4), MARS (4) and GP (4), respectively. The SVR-IPSO can improve the computa-

tional time because the convergence velocity is increased by this method.

Adana station

Table 3 shows the performance of different models for the Adana station. All indices indicated

that SVR-IPSO has a remarkable advantage over the MARS, SVR-PSO and M5T models. For

example, the MAE for SVR-IPSO (4) was 47%, 19 and 11% less than those for SVR-IPSO (1),

SVR-IPSO (2) and SVR-IPSO (3), respectively. Increasing the number of inputs for the Adana

station improved the results, as for the Antakya station. For example, the RMSE for SVRI-PSO

(4) was 10.02, approximately 52, 19 and 17% lower than those for SVR-IPSO (1), SVR-IPSO

(2) and SVR-PISO (3), respectively. Other indices also indicated the superiority of SVR-IPSO

(4) over other SVR-IPSO models.

The SVR-IPSO, SVR-PSO, MARS and M5T models were compared for the Adana station.

Multiple indices indicated the superiority of the SVR-IPSO model over the SVR-PSO MARS

and M5T models. For example, the M5T (3) model had the lowest MAE (15.36) in comparison

to the other M5T models, and the MARS (3) model exhibited the best performance of the

MAE index (11.91) in comparison to the other MARS models. However, the MAE values for

Table 3. Comparison of statistical indices for different models for estimation of solar radiation in the test stage for Adana station.

Method Input variables MAE (Langley) RMSE

(Langley)

MBE NSE Time (s)

SVR-IPSO (1) Tmax, Tmin 17.01 21.12 0.042 0.701 9

SVR-PSO (1) κ = 0.05, C = 69, γ = 0.117 Tmax, Tmin 17.54 22.12 0.045 0.699 10

M5T (1) [3] Tmax, Tmin 21.39 26.54 0.053 0.611 12

MARS (1) [3] Tmax, Tmin 19.67 23.46 0.049 0.696 14

GP (1) Tmax, Tmin 17.61 22.02 0.042 0.612 11

SVR-IPSO (2) Tmax, Tmin, Hs 11.10 12.21 0.032 0.734 12

SVR-PSO (2) κ = 0.05, C = 62, γ = 0.167 Tmax, Tmin, Hs 11.23 14.23 0.035 0.717 14

M5T (2) [3] Tmax, Tmin, Hs 15.65 19.29 0.061 0.795 16

MARS (2) [3] Tmax, Tmin, Hs 12.88 15.49 0.039 0.868 18

GP (2) Tmax, Tmin, Hs 11.36 14.35 0.037 0.719 15

SVR-IPSO (3) Tmax, Tmin, Hs, Ws 10.12 12.01 0.032 0.761 15

SVR-PSO (3) κ = 0.05, C = 60, γ = 0.166 Tmax, Tmin, Hs, Ws 10.25 12.11 0.034 0.711 16

M5T (3) [3] Tmax, Tmin, Hs, Ws 15.36 19.13 0.079 0.798 17

MARS (3) [3] Tmax, Tmin, Hs, Ws 11.91 14.69 0.036 0.881 19

GP (3) Tmax, Tmin, Hs, Ws 10.27 12.22 0.39 0.722 17

SVR-IPSO (4) Tmax, Tmin, Hs, Ws, Hs 9.01 10.02 0.034 0.871 17

SVR-PSO (4) κ = 0.09, C = 62, γ = 0.165 Tmax, Tmin, Hs, Ws, Hs 9.87 10.32 0.044 0.709 18

M5T (4) [3] Tmax, Tmin, Hs, Ws, Rh 15.97 20.89 0.072 0.759 20

MARS (4) [3] Tmax, Tmin, Hs, Ws, Rh 12.79 15.40 0.021 0.869 22

GP (4) Tmax, Tmin, Hs, Ws 9.99 10.35 0.046 0.712 24

https://doi.org/10.1371/journal.pone.0217634.t003
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these two models were 36 and 18% more than SVR-PSO (4). Other indices also indicated the

superiority of SVR-IPSO (4) over the MARS and M5T models. However, a comparison of the

results for GP and SVR-IPSO shows better performance for GP. For example, the MAE and

RMSE values for SVR-IPSO (4) are 1.20 and 3.1% less than those for GP (4). In addition, the

GP model has the best performance in comparison to the MARS and M5T models. Increasing

the inputs for the different models shows that models with 5 inputs have the best performance.

The various indices did not unanimously indicate the superiority of a specific model as the

best among the M5T models. For example, based on RMSE and MAE, M5T (3) had the best

performance in comparison to the other M5T models. However, the MBE showed better

performance for M5T (1) in comparison to the other M5T models. Fig 6 shows the perfor-

mance of different models based on the RMSE (objective function) for the Adana station. The

SVR-IPSO models for all input combinations had the best performance in comparison to the

SVR-PSO, MARS and M5T models. The lowest value for RMSE was exhibited by SVR-IPSO

(4) and the worst performance was exhibited by M5T (4) (Fig 6). Fig 7 shows the R2 coeffi-

cients for the SVR-IPSO models. The results showed that SVR-IPSO (4) performed better

than the other SVR-IPSO models based on its higher value for the R2 coefficient (Fig 7). In

addition, the computational times in Table 3 show that SVR-IPSO performed better than the

other methods.

Periodic model for computing solar radiation at the Antakya station

A periodic forecast entails the addition of the months as an input. Many studies have shown

that periodic prediction can improve the results of precise forecasts of hydrological and cli-

matic data. All simulation models in Table 4 are based on the addition of the month as an

input. The results in Table 4 tangibly show the superiority of the SVR-IPSO model over the

other models. For example, the MAE index indicated that SVR-IPSO (4), SVR-IPSO (3),

M5T (4) and MARS (4) were the best in comparison to the other SVR-IPSO, SVR-PSO,

M5T and MARS models. The MAE for SVR-IPSO (4) was 4.01; this was 26, 6.7 and 1.3%

better than those of the M5T (4), SVR-PSO and MARS (4) models and showed the superiority

of SVR-IPSO (4) over the other models. The NSE index also indicated the superiority of

SVR-IPSO over the other models. For example, the highest value for the NSE (0.911) was

Fig 6. Computed RMSE for Adana station.

https://doi.org/10.1371/journal.pone.0217634.g006
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exhibited by SVR-PSO (4), while the best values of this index for the M5T and MARS models

were 0.963 and 0.981, respectively. In addition, a comparison of these results with the GP

model shows that SVR-IPSO has the best performance; the error indices of SVR-IPSO are less

than those of GP. For example, the MAE values for SVR-IPSO (4), SVR-IPSO (3), SVR-IPSO

(2) and SVR-IPSO (1) are 7.1, 0.92, 2.8% and 1.3% less than those for GP (1), GP (2), GP (3),

and GP (4), respectively. Increasing the number of inputs has a good effect on the simulation

results; the fourth combination of each methods exhibits the best results. This shows that all

the parameters, namely the maximum temperature, minimum temperature, wind speed, rela-

tive humidity and month, affect the results.

The trend of the results showed that adding inputs improved the performance of SVR-IPSO

for all indices; this was not true for the M5T and MARS models. Another important point was

a comparison of the forecasts with/without adding the month. For example, the RMSE for

SVR-IPOS (4) based on the periodic model and Table 4 was 5.02, while it was 9.01 based on

Table 2 without adding the month as the input. Other indices for the other models indicated

that the value of the error indices could be significantly reduced by adding the month as an

Fig 7. Observed and estimated SR of Adana station at the test stage. (A) SVR-IPSO (4), (B) SVR- IPSO (3), (C) SVR- IPSO (2) and

(D) SVR- IPSO (1).

https://doi.org/10.1371/journal.pone.0217634.g007

Integrated support vector regression and particle swarm optimization model for solar radiation prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0217634 May 31, 2019 16 / 24

https://doi.org/10.1371/journal.pone.0217634.g007
https://doi.org/10.1371/journal.pone.0217634


input. For example, the NSE index showed that, assuming periodic simulation, the M5T (3)

model had the best performance in comparison to the other M5T models; the value of the

index for this model was 0.963, while the value of the index for the best M5T model without

adding the month was 0.903 based on Table 2. Thus, prediction can improve the results for all

models. Fig 8 shows the R2 coefficients for the SVR-IPSO models. Fig 8 indicates that the peri-

odic SVR-IPSO models perform better than the non-periodic models shown in Fig 5. In addi-

tion, the trend in computational time for the different methods shows that increasing the

number of inputs increases the computational time and that SVR-IPSO has the best perfor-

mance in comparison to the other methods.

Periodic model for computing solar radiation at the Adana station

Table 5 shows the performance of different models with periodic prediction for the Adana sta-

tion. The MAE for SVR-IPSO (4) was 4.12, which was 30, 37 and 57% less than those for

SVR-IPSO (3), SVR- IPSO (2) and SVR-IPSO (1), respectively. Based on MAE and Table 6,

M5T (3), SVR-PSO (4) and MARS (2) performed better than the other MARS and M5T mod-

els. The MAE for SVR-IPSO (4) was 37, 47 and 42% less than those for the, SVR-PSO (4), M5T

(3) and MARS (2) models, indicating the superiority of the SVR-IPSO model. A reduction in

the error indices can be achieved by increasing the number of inputs for the SVR-PSO model,

as in the previous sections. The NSE for SVR-IPSO (4) was 0.992, while the best values of this

coefficient for MARS and M5T were 0.942 and 0.942; this indicates the superiority of the

SVR-IPSO model over the other models. In addition, the results show that the GP model per-

forms better than MARS and M5T, but SVR-IPSO performs better than GP. For example, the

RMSE for SVR-IPSO (4), SVR-IPSO (3), SVR-IPSO (2) and SVR-IPSO (1) were 12, 14, 3.2

and 2.6% less than those for GP (4), GP (3), GP (2) and GP (1), respectively.

Table 4. Comparison of statistical indices for different methods for estimation of solar radiation at the test stage based on periodic models for Antakya station.

Method Input variables MAE RMSE MBE NSE Time (s)

SVR-IPSO (1) Tmax, Tmin, month 6.40 7.20 0.065 0.961 19

SVR-PSO (1) κ = 0.05, C = 60, γ = 0.165 Tmax, Tmin, month 6.45 7.23 0067 0.959 20

M5T (1) [3] Tmax, Tmin, month 10.06 12.1 0.091 0.954 22

MARS (1) [3] Tmax, Tmin, month 6.83 8.48 0.077 0.906 24

GP (1) Tmax, Tmin, month 6.49 7.29 0.069 0.961 21

SVR-IPSO (2) Tmax, Tmin, Hs, month 6.05 7.10 0.060 0.955 20

SVR-PSO (2) κ = 0.04, C = 60, γ = 0.166 Tmax, Tmin, Hs, month 6.20 7.12 0.063 0.962 22

M5T (2) [3] Tmax, Tmin, Hs, month 11.8 11.8 0.090 0.912 24

MARS (2) [3] Tmax, Tmin, Hs, month 8.18 8.18 0.085 0.957 26

GP(2) max, Tmin, Hs, month 6.23 7.91 0.089 0.967 23

SVR-IPSO (3) Tmax, Tmin, Hs, Ws, month 5.28 5.40 0.001 0.986 24

SVR-PSO (3) κ = 0.05, C = 54, γ = 0.166 Tmax, Tmin, Hs, Ws, month 5.34 5.45 0.002 0.981 25

M5T (3) [3] Tmax, Tmin, Hs, Ws, month 7.63 7.63 0.003 0.963 27

MARS (3) [3] Tmax, Tmin, Hs, Ws, month 5.83 5.83 0.029 0.978 29

GP (3) Tmax, Tmin, Hs, Ws, month 5.39 5.55 0.002 0.979 26

SVR-IPSO (4) Tmax, Tmin, Hs, Ws, Rh, month 4.01 5.02 0.002 0.991 26

SVR-PSO (4) κ = 0.05, C = 62, γ = 0.167 Tmax, Tmin, Hs, Ws, Rh, month 4.30 5.12 0.002 0.985 28

M5T (4) [3] Tmax, Tmin, Hs, Ws, Rh, month 5.87 7.68 0.005 0.962 30

MARS (4) [3] Tmax, Tmin, Hs, Ws, Rh, month 4.36 5.42 -0.019 0.981 32

GP (4) Tmax, Tmin, Hs, Ws, Rh, month 4.32 5.18 0.004 0.989 29

https://doi.org/10.1371/journal.pone.0217634.t004
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In addition, periodicity improved the results. For example, the RMSE for SVR-PSO (4)

without periodicity, according to Table 3, was 10.02, while it was 7.64 for the periodic

SVR-IPSO (4) model. Other indices for other models indicated similar effects. For example,

M5T (2) exhibited the lowest value for RMSE in comparison to the other M5T models (based

on Table 5), which was 9.66. On the other hand, the value of RMSE for the best model without

periodicity (M5T), based on Table 4, was 19.13. Thus, it is obvious that periodicity improved

the results. Furthermore, the results show that the addition of the month as an input resulted

in the best outcome for GP; the index error was reduced in comparison to the simulation

results for which the month was not an input. In addition, SVR-IPSO exhibited decreased

computational time.

Fig 9 shows the R2 coefficients for different SVR-IPSO models. SVR-IPSO (4) has the high-

est value; furthermore, the values of R2 for the models in Fig 7 was better than those for the

models in Fig 9 (without periodic prediction).

The results indicated that the SVR-IPSO act better than other models. There is more chal-

lenge for solar radiation estimation such as daily solar radiation or solar radiation for different

Fig 8. Observed and estimated SR of Antakya station at test stage based on the periodic model. (A) SVR-IPSO (4), (B) SVR- IPSO

(3), (C) SVR- IPSO (2) and (D) SVR- IPSO (1).

https://doi.org/10.1371/journal.pone.0217634.g008
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climates. Thus, the combination of Tables 2 and 3 were used to estimate daily solar radiation

for better evaluation of new model. Also, previous studies suggested that the SVR with the

other optimization algorithms. Genetic algorithm and firefly algorithms were used to deter-

mine the SVR parameters. The firefly algorithm (FFA) acts based on social behavior in the fire-

flies. The attractiveness of each firefly is based on its light intensity. The light intensity for each

firefly is considered as objective function and the social behavior for the fireflies is used for the

Table 5. Comparison of statistical indices for different models for estimation of solar radiation at the test stage based on periodic models for Adana station.

Method Input variables MAE RMSE MBE NSE Time (s)

SVR-IPSO (1) Tmax, Tmin, month 9.52 10.82 -0.012 0.878 24

SVR-PSO (1) κ = 0.05, C = 60, γ = 0.166 Tmax, Tmin, month 9.54 10.9 -0.014 0.933 25

M5T (1) [3] Tmax, Tmin, month 10.2 13.2 -0.016 0.903 27

MARS (1) [3] Tmax, Tmin, month 9.17 11.2 -0.031 0.930 29

GP (1) Tmax, Tmin, month 9.59 11.12 -0.015 0.932 26

SVR-IPSO (2) Tmax, Tmin, Hs, month 6.56 8.84 -0.090 0.962 25

SVR-PSO (2) κ = 0.05, C = 62, γ = 0.165 Tmax, Tmin, Hs, month 7.01 9.12 -0.010 0.950 27

M5T (2) [3] Tmax, Tmin, Hs, month 9.26 9.66 -0.011 0.924 28

MARS (2) [3] Tmax, Tmin, Hs, month 7.10 11.72 -0.026 0.949 30

GP (2) Tmax, Tmin, Hs, month 7.05 9.14 0.011- 0949 29

SVR-IPSO (3) Tmax, Tmin, Hs, Ws, month 5.89 8.02 -0.009 0.962 27

SVR-PSO (3) κ = 0.05, C = 60, γ = 0.166 Tmax, Tmin, Hs, Ws, month 6.94 9.01 -0.010 0.951 28

M5T (3) [3] Tmax, Tmin, Hs, Ws, month 7.79 10.3 -0.015 0.942 31

MARS (3) [3] Tmax, Tmin, Hs, Ws, month 7.68 10.3 -0.037 0.942 33

GP (3) Tmax, Tmin, Hs, Ws, month 6.99 9.23 -0.010 0.949 29

SVR-IPSO (4) Tmax, Tmin, Hs, Ws, Rh, month 4.12 7.64 -0.008 0.992 29

SVR-PSO (4) κ = 0.05, C = 60, γ = 0.166 Tmax, Tmin, Hs, Ws, Rh, month 6.45 8.67 -0.009 0.970 30

M5T (4) [3] Tmax, Tmin, Hs, Ws, Rh, month 8.46 10.40 -0.032 0.940 32

MARS (4) [3] Tmax, Tmin, Hs, Ws, Rh, month 7.84 10.1 -0.018 0.944 33

GP (4) Tmax, Tmin, Hs, Ws, Rh, month 6.49 8.69 -0.009 0.971 31

https://doi.org/10.1371/journal.pone.0217634.t005

Table 6. Comparison of statistical indices for different methods for estimation of daily solar radiation in Konay station.

Method Input variables MAE% RMSE% MBE% NSE Time (s)

SVR-IPSO (1) Tmax, Tmin 12 14 8 0.84 15

SVR-PSO (1) Tmax, Tmin 14 16 9 0.80 18

SVR-FFA (1) Tmax, Tmin 17 20 10 0.79 22

SVR-GA (1) Tmax, Tmin 22 23 12 0.77 25

SVR-IPSO (2) Tmax, Tmin, Hs 10 12 7 0.89 17

SVR-PSO (2) Tmax, Tmin, Hs 12 14 8 0.83 20

SVR-FFA. (2) Tmax, Tmin, Hs 15 18 10 0.82 25

SVR-GA (2) Tmax, Tmin ‘, Hs 16 21 11 0.81 27

SVR-IPSO (3) Tmax, Tmin, Hs, Ws 9 10 5 0.91 19

SVR-PSO (3) Tmax, Tmin, Hs, Ws 11 12 7 0.85 21

SVR-FFA (3) Tmax, Tmin, Hs, Ws 12 16 8 0.83 26

SVR-GA (3) Tmax, Tmin, Hs, Ws 14 18 9 0.82 28

SVR-IPSO (4) Tmax, Tmin, Hs, Ws, Rh 7 9 3 0.95 20

SVR-PSO (4) Tmax, Tmin, Hs, Ws, Rh 10 10 5 0.90 22

SVR-FFA (4) Tmax, Tmin, Hs, Ws, Rh 11 14 6 0.88 27

SVR-GA (4) Tmax, Tmin, Hs, Ws, Rh 12 16 7 0.86 30

https://doi.org/10.1371/journal.pone.0217634.t006
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optimization algorithm. More details can be seen in the [33]. Also, the genetic algorithm acts

based on natural selection and chromosomes. The mutation and crossover and selection oper-

ators were used to improve the solutions and more details can be seen in the [47]. Thus, the

SVR-IPSO, SVR-PSO, SVR-FFA and SVR–GA are used for the estimation of daily solar radia-

tion for different station with different climatic condition. Konya station is selected as station

for evaluating of validation of SVR-IPSO. This station Konya is located at the 37˚580N, 32˚320E
in a semi dry climate. Also, the average temperature for this station is 23.3˚C. There are 2860

sunshine duration per year averagely. The estimation of daily solar estimation for period 1981

to 2016 is considered as more challenging for the SVR-IPSO model.

The RMSE, MAE and MBE index are computed on percentage. Table 6 shows the daily

solar radiation for Konya Station 1981 to 2016. The results indicated that the SVR-IPSO has

the less RMSE and MAE value and thus, the fourth combination for SVR-IPSO is better com-

pared to the SVR-GA, SVR-PSO and SVR-FFA. Also, the worst performance is also observed

and recorded for the SVR-GA. The first input for the SVR-GA has the worst performance

Fig 9. Observed and estimated SR of Adana station based on periodic predication at the test stage. (A) SVR-IPSO (4), (B) SVR- IPSO

(3), (C) SVR- IPSO (2) and (D) SVR- IPSO (1).

https://doi.org/10.1371/journal.pone.0217634.g009
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compared to SVR-GA (2), SVR-GA (3) and SVR-GA (4). The NSE value for SVR-IPSO (4)

has the most value compared to the other model and least value for the NSE is related to the

SVR-GA. However, the results indicate that the SVR-IPSO can shows a good performance for

different climates for daily or monthly solar estimation.

It is true that the accuracy of the any forecasting model will be affected positively or nega-

tively, when using future input data (in this study metrological data). Therefore, there is a need

to keep updating the forecasting model by feeding it with the new patterns of the future data.

However, it should be noted that as long as the future data is similar with the used data pattern,

the model’s performance will not change much. Based on the RMSE for the best model

(SVR-IPSO (4)), the enhancement rate has been investigated by comparing with different

studies in the literature. Table 7 summarize the enhancement that has been accomplished by

the proposed model for two stations (Adana and Antakya). The proposed model shows a sig-

nificant enhancement in the performance for both stations. It can be determined that the sig-

nificant of performance is (42.12%–20.91%) for Adana and (58.51%–7.38%) for Antakya.

Conclusion

The present study introduced a new prediction model for SR. The model is essentially based

on an improved SVR integrated withI PSO;I PSO determines the optimum values of the

unknown SVR parameters. The proposed model was applied to two stations from Turkey for

evaluation against the previously developed SVR-PSO, MARS, GP and M5T models, which

have been applied to the same stations. Based on the proposed performance indicators,

increasing the number of inputs improved the results of the SVR-IPSO model. In addition,

the application of SVR-IPSO to the Antakya station showed the superiority of SVR-IPSO

over the other models. The proposed SVR-IPSO models for the two stations achieved better

performance than the MARS, GP, SVR-PSO and M5T models for different input scenarios.

Furthermore, an additional input variable representing the month of the year resulted in

improvements over previous input scenarios. In conclusion, the proposed SVR integrated with

IPSO (SVR-IPSO) can be considered an effective tool for solar radiation prediction that could

help decision-makers create efficient plans for renewable energy production. A few important

variables were lacking in the selected stations and hence could not be examined in this study.

Also, the SVR-IPSO, was validated for Konya station and the results were compared with the

SVR-GA, SVR-PSO and SVR-FFA. The results showed that the SVR-IPSO model has best per-

formance comparing with all the presented models.

The proposed model could be improved by adding other input variables that directly influ-

ence solar radiation. Future studies should consider additional input variables that might

Table 7. The enhancement rate for best model (SVR-IPSO (4)) comparing with the previous study [3].

Method Enhancement Rate

Adana Antakya

M5T (1) [3] 42.12% 58.51%

MARS (1) [3] 31.78% 40.80%

M5T (2) [3] 20.91% 57.45%

MARS (2) [3] 34.81% 38.63%

M5T (3) [3] 25.82% 34.20%

MARS (3) [3] 25.82% 13.89%

M5T (4) [3] 26.53% 34.63%

MARS (4) [3] 24.35% 7.38%

https://doi.org/10.1371/journal.pone.0217634.t007
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improve the accuracy of predicting solar radiation. In addition, an integration of the SVR and

advanced meta-heuristic optimization algorithms should be investigated as it might improve

the forecasting accuracy for SR. The sun radiation has a direct effect on the climate condition

therefore, it is essential to consider further evaluation for the proposed model in different cli-

matic zone.
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