Please use this identifier to cite or link to this item: http://dspace.uniten.edu.my/jspui/handle/123456789/5209
Title: Application of Taguchi method in designing a 22nm high-k/metal gate NMOS transistor
Authors: Afifah Maheran, A.H. 
Menon, P.S. 
Ahmad, I. 
Shaari, S. 
Issue Date: 2014
Abstract: This paper reports on the application of Taguchi method in modelling a 22nm gate length high-k/metal gate NMOS transistor. The Nominal-the-Best Signal-to-noise Ratio (SNR) using Taguchi's optimization technique was utilized to optimize the process parameters in determining the best threshold voltage (Vth) value where it was used as the evaluation variable. The high permittivity material (high-k) / metal gate device consists of titanium dioxide (TiO2) and tungsten silicide (WSix) respectively. The simulation work was executed using a TCAD simulator, which consist of ATHENA and ATLAS as a process and device simulator respectively. In this research, the Halo implantation tilting angle was identified as the most influencial factor in affecting the Vth with a percentage of 87%, followed by the oxide growth anneal temperature (8%), the metal gate anneal temperature (4%) and lastly the Halo implantation dose (1%). As a conclusion, the Halo tilting angle is the dominant factor in optimizing the process parameter. Meanwhile the Halo implantation dose can be considered as an adjustment factor in order to achieve the target Vth value of 0.289 V which is in line with projections made by the International Technology Roadmap for Semiconductors (ITRS). © (2014) Trans Tech Publications, Switzerland.
URI: http://dspace.uniten.edu.my:80/jspui/handle/123456789/5209
Appears in Collections:COE Scholarly Publication

Show full item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.