Please use this identifier to cite or link to this item: http://dspace.uniten.edu.my/jspui/handle/123456789/10622
Title: Fuzzy logic enhanced direct torque control with space vector modulation
Authors: Tan, J.-D. 
Koh, S.-P. 
Tiong, S.-K. 
Ali, K. 
Abdalla, A. 
Issue Date: 2018
Abstract: Over the past few years, multiple types of modifications have been proposed onto the Direct Torque Control (DTC) scheme. Among others is the implementation of Space Vector Modulation (SVM). In this paper, two new control strategies are proposed onto an SVM-DTC. Instead of using PI torque and flux controllers, a fuzzy logic control method is implemented in the proposed modification to achieve a more constant switching frequency while minimizing the torque error. The fuzzy logic controller controls the voltages in direct and quadratic reference frame (Vd, Vq). This approach fully utilizes the switching capability of the inverter and thus improving the overall system performance. To overcome issues in open loop stator flux such as DC drift and saturation, a closed loop estimation method of stator flux is also proposed based on voltage model and low pass filter. The performance of the proposed control strategy is benchmarked with that of a conventional DTC– SVM. Simulations and experiments were carried out and the results show that the proposed method outperforms the conventional DTC-SVM in terms of DC-offset elimination and overall system robustness. © 2018 Institute of Advanced Engineering and Science. All rights reserved.
URI: http://dspace.uniten.edu.my/jspui/handle/123456789/10622
DOI: 10.11591/ijeecs.v11.i2.pp704-710
Appears in Collections:CSIT Scholarly Publication

Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.