Please use this identifier to cite or link to this item: http://dspace.uniten.edu.my/jspui/handle/123456789/11344
DC FieldValueLanguage
dc.contributor.authorIslam, N.N.en_US
dc.contributor.authorHannan, M.A.en_US
dc.contributor.authorShareef, H.en_US
dc.contributor.authorMohamed, A.en_US
dc.date.accessioned2018-12-14T02:42:52Z-
dc.date.available2018-12-14T02:42:52Z-
dc.date.issued2017-
dc.description.abstractThis paper deals with the backtracking search algorithm (BSA) optimization technique to solve the design problems of multi-machine power system stabilizers (PSSs) in large power system. Power system stability problem is formulated by an optimization problem using the LTI state space model of the power system. To conduct a comprehensive analysis, two test systems (2-AREA and 5-AREA) are considered to explain the variation of design performance with increase in system size. Additionally, two metaheuristic algorithms, namely bacterial foraging optimization algorithm (BFOA) and particle swarm optimization (PSO) are accounted to evaluate the overall design assessment. The obtained results show that BSA is superior to find consistent solution than BFOA and PSO regardless of system size. The damping performance that achieved from both test systems are sufficient to achieve fast system stability. System stability in linearized model is ensured in terms of eigenvalue shifting towards stability regions. On the other hand, damping performance in the non-linear model is evaluated in terms of overshoot and setting times. The obtained damping in both test systems are stable for BSA based design. However, BFOA and PSO based design perform worst in case of large power system. It is also found that the performance of BSA is not affected for large numbers of parameter optimization compared to PSO, and BFOA optimization techniques. This unique feature encourages recommending the developed backtracking search algorithm for PSS design of large multi-machine power system. © 2017
dc.language.isoenen_US
dc.titleAn application of backtracking search algorithm in designing power system stabilizers for large multi-machine systemen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.neucom.2016.10.022-
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:UNITEN Scholarly Publication
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.