Please use this identifier to cite or link to this item:
Title: Non-technical loss analysis for detection of electricity theft using support vector machines
Authors: Nagi, J. 
Mohammad, A.M. 
Yap, K.S. 
Tiong, S.K. 
Ahmed, S.K. 
Issue Date: 2008
Abstract: Electricity consumer dishonesty is a problem faced by all power utilities. Finding efficient measurements for detecting fraudulent electricity consumption has been an active research area in recent years. This paper presents a new approach towards Non-Technical Loss (NTL) analysis for electric utilities using a novel intelligence-based technique, Support Vector Machine (SVM). The main motivation of this study is to assist Tenaga Nasional Berhad (TNB) in Malaysia to reduce its NTLs in the distribution sector due to electricity theft. The proposed model preselects suspected customers to be inspected onsite for fraud based on irregularities and abnormal consumption behavior. This approach provides a method of data mining and involves feature extraction from historical customer consumption data. The SVM based approach uses customer load profile information to expose abnormal behavior that is known to be highly correlated with NTL activities. The result yields classification classes that are used to shortlist potential fraud suspects for onsite inspection, based on significant behavior that emerges due to irregularities in consumption. Simulation results prove the proposed method is more effective compared to the current actions taken by TNB in order to reduce NTL activities. ©2008 IEEE.
Appears in Collections:COE Scholarly Publication

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.