Please use this identifier to cite or link to this item:
Title: A novel mechanism for contention resolution in Parallel Optical Burst Switching (POBS) networks
Authors: Zaiter, M.J. 
Yussof, S. 
Abdelouhahab, A. 
Cheah, C.L. 
Salih, A.I. 
Issue Date: 2014
Abstract: Parallel Optical Burst Switching (POBS) is a variant of Optical Burst Switching (OBS) which is proposed as a new optical switching strategy for Ultra-Dense Wavelength Division Multiplexing (U-DWDM) to support the enormous bandwidth demand of the next generation Internet. As opposed to OBS, POBS transmits bursts in two dimensions: the wavelength dimension and the time dimension. POBS network uses an one-way resource reservation mechanism to set up the resources for each data burst transmission. The use of this mechanism may cause bursts to contend for the same resources at the same time at core (intermediate) nodes of the network. Therefore, the performance of POBS networks depends on the contention resolution policies to reach acceptable levels for bandwidth usage. These policies may increase both the cost and complexities of the core nodes in POBS networks. Most literatures on OBS networks apply contention resolution at the core nodes based on reactive strategies that are activated after contention takes place in core nodes. This study proposes the use of a proactive contention resolution technique at ingress nodes of POBS network as well as reactive contention resolution technique at core nodes for reducing the probability of burst drop in the network in order to increase the performance of the network. The simulation results show that the use of POBS network with the proposed Reactive Odd/Even Node ID Wavelength Assignment Technique (POBS-ROENIDWAT) shows a better performance in terms of reduced data loss rate and increased throughput compared to the performances of both POBS network with Sequential Wavelength Assignment Technique (POBS-SWAT) and OBS network with Burst Segmentation (OBS-BS). © Maxwell Scientific Organization, 2014.
Appears in Collections:CCI Scholarly Publication

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.