Please use this identifier to cite or link to this item: http://dspace.uniten.edu.my/jspui/handle/123456789/8349
Title: Effect of inclination angle on three-dimensional combined convective heat transfer of nanofluids in rectangular channels
Authors: Mohammed, H.A. 
Om, N.I. 
Wahid, M.A. 
Issue Date: 2013
Abstract: Combined convective nanofluids flow and heat transfer in an inclined rectangular duct is numerically investigated. Three dimensional, laminar Navier-Stokes and energy equations were solved using the finite volume method. Pure water and four types of nanofluids such as Au, CuO, SiO2 and TiO2 with volume fractions range of 2% ≤ φ ≤ 7% are used. This investigation covers the following ranges: 2 × 106 ≤ Ra ≤ 2 × 107, 100 ≤ Re ≤ 1000 and 30° ≤ Θ ≤ 60°. The results revealed that the Nusselt number increased as Rayleigh number increased.SiO2nanofluid has the highest Nusselt number while Au nanofluid has the lowest Nusselt number. An increasing of the duct inclination angle decreases the heat transfer. © (2013) Trans Tech Publications, Switzerland.
URI: http://dspace.uniten.edu.my/jspui/handle/123456789/8349
Appears in Collections:COE Scholarly Publication

Show full item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.